Advertisement

InP Ring-Shaped Quantum Dot Molecules by Droplet Epitaxy

  • Wipakorn Jevasuwan
  • Somchai Ratanathammapan
  • Somsak Panyakeow
Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 14)

Abstract

Droplet epitaxy technique is a key fabrication method to create ring-shaped nanostructures. InP ring-shaped quantum dot molecules are grown on In0.5Ga0.5P/GaAs(0 0 1) due to lattice mismatch of 3.8% between InP and In0.5Ga0.5P and isotropic migration property of In atoms during the crystallization step of In droplets on In0.5Ga0.5P. The ring shape, density of the ring and number of dots on the ring are controlled by various growth parameters such as deposition and crystallization temperatures, In deposition rate and thickness. InP ring-shaped quantum dot molecules provide photoluminescence peak at 740 nm (1.66 eV) with FWHM of 45 meV at 20 K. Potential applications of ring-shaped quantum dot molecules in quantum cellular automata are discussed.

Keywords

Crystallization Temperature Deposition Temperature Molecular Beam Epitaxy Growth Quantum Ring Ring Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research article is an output which is supported by Thailand Research Fund (TRF) and Office of High Education Commission (OHEC) of Thailand in combined projects, i.e. Senior Research Scholar (RTA5080003), Distinguished Professor Grant (DPG5380002), the Royal Golden Jubilee Ph.D. program (Grant No. PHD/0040/2549). This research work is also supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (EN1180A-55) as well as by Nanotechnology Center of Thailand with counterpart fund from Chulalongkorn University.

References

  1. 1.
    Schmidt, O.G., Eberl, K.: Phys. Rev. B 61, 13721 (2000)CrossRefGoogle Scholar
  2. 2.
    Alfarov, Z.: Rev. Mod. Phys. 73, 767 (2001)CrossRefGoogle Scholar
  3. 3.
    Grundmann, M.: Physica E 5, 167–184 (2000)CrossRefGoogle Scholar
  4. 4.
    Tanabe, K., et al.: Appl. Phys. Lett. 100, 193905 (2012)CrossRefGoogle Scholar
  5. 5.
    Laouthaiwattana, K., et al.: Sol. Energy Mater. Sol. Cell 93, 746–749 (2009)CrossRefGoogle Scholar
  6. 6.
    Suraprapapich, S., et al.: J. Vac. Sci. Technol. B 24, 1665 (2006)CrossRefGoogle Scholar
  7. 7.
    Boonpeng, P., et al.: Microelectron. Eng. 86, 853–856 (2009)CrossRefGoogle Scholar
  8. 8.
    Wang, Z.M., et al.: Appl. Phys. Lett. 84, 1931 (2004)CrossRefGoogle Scholar
  9. 9.
    Lent, C.S., et al.: Nanotechnology 4, 49–57 (1993)CrossRefGoogle Scholar
  10. 10.
    Lent, C.S., Tougaw, P.D.: Proc. IEEE 85, 491 (1997)CrossRefGoogle Scholar
  11. 11.
    Porod, W.: J. Franklin Inst. 334B(5/6), 1147–1175 (1997)CrossRefGoogle Scholar
  12. 12.
    Bajec, I.L., et al.: Microelectron. Eng. 83, 1826–1829 (2006)CrossRefGoogle Scholar
  13. 13.
    Fisher, A.M.: Phys. Rev. Lett. 102, 076405 (2009)CrossRefGoogle Scholar
  14. 14.
    Watanabe, K., et al.: Jpn. J. Appl. Phys. 39, 179–181 (2000)CrossRefGoogle Scholar
  15. 15.
    Yamagiwa, M., et al.: Appl. Phys. Lett. 29, 113115 (2006)CrossRefGoogle Scholar
  16. 16.
    Sanguinetti, S., et al.: J. Appl. Phys. 104, 113519 (2008)CrossRefGoogle Scholar
  17. 17.
    Stemmann, A., et al.: J. Appl. Phys. 106, 064315 (2009)CrossRefGoogle Scholar
  18. 18.
    Mano, T., Mano, T., et al.: Thin Solid Films 515, 531–534 (2006)CrossRefGoogle Scholar
  19. 19.
    Heyn, C., et al.: Appl. Phys. Lett. 90, 203105 (2007)CrossRefGoogle Scholar
  20. 20.
    Strom, N.W., et al.: Nano Res. Lett. 2, 112 (2007)CrossRefGoogle Scholar
  21. 21.
    Esser, N., et al.: J. Vac. Sci. Technol. B 19, 1756–1761 (2001)CrossRefGoogle Scholar
  22. 22.
    Naraporn, P., et al.: J. Cryst. Growth 323, 282–285 (2011)CrossRefGoogle Scholar
  23. 23.
    Kurtenbach, A., et al.: J. Electron. Mater. 25, 395–400 (1996)CrossRefGoogle Scholar
  24. 24.
    Zundel, M.K., et al.: Appl. Phys. Lett. 73, 1784–1786 (1998)CrossRefGoogle Scholar
  25. 25.
    Lewis, G.M., et al.: Appl. Phys. Lett. 85, 1904–1906 (2004)CrossRefGoogle Scholar
  26. 26.
    Suraprapapich, S., et al.: Appl. Phys. Lett. 90, 183112 (2003)CrossRefGoogle Scholar
  27. 27.
    Suraprapapich, S., et al.: J. Cryst. Growth 302, 735–739 (2007)CrossRefGoogle Scholar
  28. 28.
    Mano, T., Kiguchi, N.: J. Cryst. Growth 278, 108–112 (2005)CrossRefGoogle Scholar
  29. 29.
    Lee, J.H., et al.: J. Appl. Phys. 106, 073106 (2009)CrossRefGoogle Scholar
  30. 30.
    Mazur, Y.I., et al.: Appl. Phys. Lett. 86, 063102 (2005)CrossRefGoogle Scholar
  31. 31.
    Somaschini, C., et al.: Nanotechnology 20, 185602 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Wipakorn Jevasuwan
    • 1
  • Somchai Ratanathammapan
    • 1
  • Somsak Panyakeow
    • 1
  1. 1.Faculty of Engineering, The Semiconductor Device Research Laboratory, Electrical Engineering DepartmentChulalongkorn UniversityBangkokThailand

Personalised recommendations