Nanowire BioFETs: An Overview

  • M. Meyyappan
  • Jeong-Soo Lee


In this chapter, the biosensing as a key element of nanotechnology and commanding a wide range of applications is discussed, e.g., fast and efficient clinical diagnostics, health care, security, environmental monitoring, etc. The operation and sensing mechanism of BioFETs and ion-sensitive FETs are elaborated on a molecular level, based upon the molecular recognition between target and probe molecules and the input gate voltage and output ON current of the conventional FETs. In particular, the extended roles of the gate electrode of BioFETs as the probing surface are highlighted, in comparison with the conventional gate electrode, together with the physical and biological processes for detecting target molecules. Moreover, the bottom-up syntheses of vertical and horizontal nanowires are presented and the ensuing nanowires are characterized. Also, the top-down and bottom-up approaches for processing nanowires are compared by taking as criteria the process complexity and quality of the nanowires produced. Finally, the future prospects of bio-sensing are presented.


Severe Acute Respiratory Syndrome Field Effect Transistor Silicon Nanowires Severe Acute Respiratory Syndrome Gate Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Light-emitting diode






Noise-equivalent power


Single-walled carbon nanotube


Field effect transistor


Chemical vapor deposition


Selected-area-electron diffraction




Plasma enhanced chemical vapor deposition


Focused ion beam



The work at Postech was supported by the World Class University program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Project: R31-2008-000-10100-0).


  1. 1.
    Daniels, J. S., & Pourmand, N. (2007). Label-free impedance biosensors: opportunities and challenges. Electroanal, 19, 1239–1257.CrossRefGoogle Scholar
  2. 2.
    Grieshaber, D., Mackenzie, R., Voros, J., & Reimhult, E. (2008). Electrochemical biosensors—sensor principles and architecture. Sensors, 8, 1450–1458.Google Scholar
  3. 3.
    Cosnier, S., & Mailley, P. (2008). Recent advances in DNA sensors. Analyst, 133, 984–991.CrossRefGoogle Scholar
  4. 4.
    Gooding, J. J. (2002). Electrochemical DNA hybridization sensors. Electroanal, 14, 1145–1156.CrossRefGoogle Scholar
  5. 5.
    Lee, C. S., Kim, S. K., & Kim, M. (2009). Ion-sensitive field-effect transistor for biological sensing. Sensors, 9, 7111–7131.CrossRefGoogle Scholar
  6. 6.
    Ronkainen, N. J., Halsall, H. B., & Heineman, W. R. (2010). Electrochemical biosensors. Chemical Society Reviews, 39, 1747–1763.CrossRefGoogle Scholar
  7. 7.
    Wei, D., Bailey, M. J. A., Andrew, P., & Ryhanen, T. (2009). Electrochemical biosensors at the nanoscale. Lab on a Chip, 9, 2123–2131.CrossRefGoogle Scholar
  8. 8.
    Monosik, R., Stred’ansky, M., Sturdik, E. (2012). Application of electrochemical biosensors in clinical diagnostics. Journal of Clinical Laboratory Analysis, 26, 22–34.Google Scholar
  9. 9.
    Yogeswaran, U., & Chen, S. M. (2008). A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors, 8, 290–313.CrossRefGoogle Scholar
  10. 10.
    Li, J. (2004).Biosensors. In M. Meyyappan (Ed.), Carbon nanotubes: science and applications. Boca Raton: CRC Press.Google Scholar
  11. 11.
    Ingerbrandt, S., & Offerhausser, A. (2006). Label-free detection of DNA using field-effect transistors. Physica Status Solidi (a), 203, 3395–3411.Google Scholar
  12. 12.
    Schafer, S., Eick, S., Hofmann, B., Dufaux, T., Stockmann, R., Wrobel, G., et al. (2009). Time-dependent observation of individual cellular binding events to field-effect transistors. Biosensors & Bioelectronics, 24, 1201–1208.CrossRefGoogle Scholar
  13. 13.
    Poghossian, A., Ingebrandt, S., Offenhausser, A., & Schoning, M. J. (2009). Field-effect devices for detecting cellular signals. Seminars in Cell & Developmental Biology, 20, 41–48.CrossRefGoogle Scholar
  14. 14.
    Sakata, T., & Miyahara, Y. (2007). Direct transduction of allele-specific former extension into electrical signal using generic field effect transistor. Biosensors & Bioelectronics, 22, 1311–1316.CrossRefGoogle Scholar
  15. 15.
    Sohn, Y. S., & Kim, Y. T. (2008). Field-effect transistor type C-reactive protein sensor using cysteine-tagged protein G. Electronics Letters, 44, 955–956.CrossRefGoogle Scholar
  16. 16.
    Park, K. M., Lee, S. K., Sohn, Y. S., & Choi, S. Y. (2008). BioFET sensor for detection of albumin in urine. Electronics Letters, 44, 185–186.CrossRefGoogle Scholar
  17. 17.
    Park, K. Y., Sohn, Y. S., Kim, C. K., Kim, H. S., Bae, Y. S., & Choi, S. Y. (2008). Development of a FET-type albumin sensor for diagnosing nephritis. Biosensors & Bioelectronics, 23, 1904–1907.CrossRefGoogle Scholar
  18. 18.
    Eteshola, E., Keener, M. T., Elias, M., Shapiro, J., Brillson, L. J., Bhushan, B., et al. (2008). Engineering functional protein interfaces for immunologically modified field effect transistor (ImmunoFET) by molecular genetic means. Journal of the Royal Society Interface, 5, 123–127.CrossRefGoogle Scholar
  19. 19.
    Gupta, S., Elas, M., Wen, X., Shapiro, J., Brillson, L., Lu, W., et al. (2008). Detection of chemically relevant levels of protein analyte under physiologic buffer using planar field effect transistors. Biosensors & Bioelectronics, 24, 505–511.CrossRefGoogle Scholar
  20. 20.
    Hsiao, C. Y., Lin, C. H., Hung, C. H., Su, C. J., Lo, Y. R., Lee, C. C., et al. (2009). Novel poly-silicon nanowire field effect transistors for biosensing application. Biosensors & Bioelectronics, 24, 1223–1229.CrossRefGoogle Scholar
  21. 21.
    Lin, C. H., Hsiao, C. Y., Hung, C. H., Lo, Y. R., Lee, C. C., Su, C. J., et al. (2008). Ultrasensitive detection of dopamine using a polysilicon nanowire field effect transistor. Chemical Communications, 44, 5749–5751.CrossRefGoogle Scholar
  22. 22.
    Freeman, R., Elbaz, J., Gill, R., Zayats, M., & Willner, I. (2007). Analysis of dopamine and tyrosinase activity on ion-sensitive field-effect transistor (ISFET) devices. Chemistry—A European Journal, 13, 7288–7293.CrossRefGoogle Scholar
  23. 23.
    Zayats, M., Huang, Y., Gill, R., Ma, C. A., & Willner, I. (2006). Label-free and reagentless aptamer-based sensors for small molecules. Journal of the American Chemical Society, 128, 13666–13667.CrossRefGoogle Scholar
  24. 24.
    Stern, E., Klemic, J. F., Routenberg, D. A., Wyrembak, P. N., Turner-Evans, D. B., Hamilton, A. D., et al. (2007). Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature, 445, 519–522.CrossRefGoogle Scholar
  25. 25.
    Bergveld, P. (1970). Development of an ion sensitive solid state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering, 17, 70–71.CrossRefGoogle Scholar
  26. 26.
    Caras, S., & Janata, J. (1980). Field effect transistor sensitive to penicillin. Analytical Chemistry, 52, 1935–1937.CrossRefGoogle Scholar
  27. 27.
    Schoning, M., & Poghossian, A. (2006). BioFEDs (field effect devices): state of the art and new directions. Electroanal, 18, 1893–1900.CrossRefGoogle Scholar
  28. 28.
    Bergveld, P. (2003). Thirty years of ISFETOLOGY—what happened in the past 30 years and what may happen in the next 30 years. Sensors and Actuators, 13(88), 1–20.Google Scholar
  29. 29.
    Schoning, M., & Poghossian, A. (2002). Recent advances in biologically sensitive field effect transistors (BioFETs). Analyst, 127, 1137–1151.CrossRefGoogle Scholar
  30. 30.
    Yuqing, M., Jianguo, G., & Jianrong, C. (2003). Ion sensitive field effect transducer-based biosensors. Biotechnology Advances, 21, 527–534.CrossRefGoogle Scholar
  31. 31.
    Meyyappan, M., & Sunkara, M. K. (2010). Inorganic nanowires: applications, properties and characterization. Boca Raton: CRC Press.Google Scholar
  32. 32.
    Mao, A., Ng, H. T., Nguyen, P., McNeil, M., & Meyyappan, M. (2005). Silicon nanowire synthesis by a vapor-liquid-solid approach. Journal of Nanoscience and Nanotechnology, 5, 31–835.CrossRefGoogle Scholar
  33. 33.
    Westwater, J., Gosain, D. P., Tomiya, S., Usui, S., & Ruda, H. (1997). Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. Journal of Vacuum Science & Technology, 13(15), 554–557.CrossRefGoogle Scholar
  34. 34.
    Aella, P., Ingole, S., Potuskey, W. T., & Picraux, T. (2007). Influence of plasma stimulation on Si nanowire nucleation and orientation control. Advanced Materials, 19, 2603–2607.CrossRefGoogle Scholar
  35. 35.
    Johansson, J., Wacaser, B. A., Kick, K. A., & Seifert, W. (2006). Growth related aspects of epitaxial nanowires. Nanotechnology, 17, 5355–5361.CrossRefGoogle Scholar
  36. 36.
    Noborisaka, J., Motohisa, J., & Fukui, T. (2005). Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy. Applied Physics Letters, 86, 21302.CrossRefGoogle Scholar
  37. 37.
    Nguyen, P., Ng, H. T., Kong, J., Cassell, A. M., Quinn, R., Li, J., et al. (2003). Epitaxial directional growth of indium-doped tin oxide nanowire arrays. Nano Letters, 3, 925–928.CrossRefGoogle Scholar
  38. 38.
    Nguyen, P., Vaddiraju, S., & Meyyappan, M. (2006). Indium and tin oxide nanowires by vapor-liquid-solid growth technique. Journal of Electronic Materials, 35, 200–206.CrossRefGoogle Scholar
  39. 39.
    Sun, X. H., Yu, B., Ng, G., Nguyen, T.D., Meyyappan, M. (2006). III–V compound semiconductor indium selenide (In2Se3) nanowires: synthesis and characterization. Applied Physics Letters, 89, 233121.Google Scholar
  40. 40.
    Davami, K., Kang, D., Lee, J. S., & Meyyappan, M. (2011). Synthesis of ZnTe nanostructures by vapor-liquid-solid technique. Chemical Physics Letters, 504, 62–66.CrossRefGoogle Scholar
  41. 41.
    Davami, K. H., Ghassemi, M., Sun, X. H., Yassar, R. S., Lee, J. S., Meyyappan, M. (2011). In situ observation of morphological change in CdTe nano- and submicron wires. Nanotechnology, 22, 35204.Google Scholar
  42. 42.
    Sun, X., Yu, B., Ng, G., & Meyyappan, M. (2007). One dimensional phase charge nanostructures: Germanium telluride nanowire. Journal of Physical Chemistry C, 11, 2421–2425.CrossRefGoogle Scholar
  43. 43.
    Sun, X., Yu, B., & Meyyappan, M. (2007). Synthesis and nanoscale thermal encoding of phase charge nanowires. Applied Physics Letters, 90, 183116.CrossRefGoogle Scholar
  44. 44.
    Nguyen, P., Ng, H. T., & Meyyappan, M. (2005). Catalyst metal selection for the synthesis of inorganic nanowires. Advanced Materials, 17, 1773–1777.CrossRefGoogle Scholar
  45. 45.
    Sun, X., Calebotta, G., Yu, B., Seluaduray, G., & Meyyappan, M. (2007). Synthesis of germanium nanowires on insulator catalyzed by indium or antimony. Journal of Vacuum Science & Technology, 13(25), 415–420.CrossRefGoogle Scholar
  46. 46.
    Sunkara, M. K., Sharma, S., Miranda, R., Lian, G., & Dickey, E. C. (2001). Bulk synthesis of silicon nanowires using a low temperature vapor-liquid-solid method. Applied Physics Letters, 79, 1546–1548.CrossRefGoogle Scholar
  47. 47.
    Ma, D. D. D., Lee, C. S., Au, F. C. K., Tong, S. Y., & Lee, S. T. (2003). Small-diameter silicon nanowire surfaces. Science, 299, 1874–1877.CrossRefGoogle Scholar
  48. 48.
    Schmidt, V., Riel, H., Snez, S., Karg, S., Riess, W., & Gosele, U. (2006). Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small, 2, 85–88.CrossRefGoogle Scholar
  49. 49.
    Ng, H. T., Han, J., Yamada, T., Nguyen, P., Chen, P., & Meyyappan, M. (2004). Single crystal nanowire vertical surround-gate field effect transistor. Nano Letters, 4, 1247–1252.CrossRefGoogle Scholar
  50. 50.
    Kim, S., Rim, T., Lee, U., Baek, E. H., Lee, H., Baek, C. H., et al. (2011). Silicon nanowire ion sensitive field effect transistor with integrated Ag/AgCl electrode: pH sensing and noise characteristics. Analyst, 136, 5012–5016.CrossRefGoogle Scholar
  51. 51.
    Timko, B. P., Karni-Cohen, T., Quan, Q., Bozhi, T., & Lieber, C. M. (2010). Design and implementation of functional nanoelectric interfaces with biomolecules, cells and tissues using nanowire device arrays. IEEE Transactions on Nanotechnology, 9, 269–280.CrossRefGoogle Scholar
  52. 52.
    Cui, Y., Wei, Q., Park, H., & Lieber, C. M. (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 293, 1289–1292.CrossRefGoogle Scholar
  53. 53.
    Patolsky, F., Zheng, G., & Liber, C. M. (2006). Nanowire-based biosensors. Analytical Chemistry, 78, 4260–4269.CrossRefGoogle Scholar
  54. 54.
    Gao, X. P. A., Zheng, G., & Lieber, C. M. (2010). Subthreshold regime has the optimal sensitivity for nanowire FET sensors. Nano Letters, 10, 547.CrossRefGoogle Scholar
  55. 55.
    Zheng, G., Patolsky, F., Cui, Y., Wang, W. U., & Lieber, C. M. (2005). Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology, 23, 1294–1301.CrossRefGoogle Scholar
  56. 56.
    Curreli, M., Li, C., Sun, Y., Lei, B., Gunderson, M., Thompson, M. E., et al. (2005). Selective functionalization of In2O3 nanowire mat devices for biosensing application. Journal of the American Chemical Society, 127, 6922–6923.CrossRefGoogle Scholar
  57. 57.
    Curreli, M., Zhang, R., Ishikawa, F. N., Chang, K. K., Cote, R. J., Zhou, C., et al. (2008). Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Transactions on Nanotechnology, 7, 651–667.CrossRefGoogle Scholar
  58. 58.
    Li, C., Curreli, M., Lin, H., Lei, B., Ishikawa, F. N., Datar, R., et al. (2005). Complimentary detection of prostate specific antigen using In2O3 nanowires and carbon nanotubes. Journal of the American Chemical Society, 127, 12484–12485.CrossRefGoogle Scholar
  59. 59.
    Ishikawa, F. N., Chang, H. K., Curreli, M., Liao, H., Olson, A. C., Chen, P. C., et al. (2009). Label-free electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano, 3, 1219–1224.CrossRefGoogle Scholar
  60. 60.
    Choi, A., Kim, K., Jung, H. I., & Lee, S. Y. (2010). ZnO nanowire biosensors for detection of biomolecular interation in enhancement mode. Sensors and Actuators, 13(148), 577–582.Google Scholar
  61. 61.
    Yeh, P. H., Li, Z. L., & Wang, Z. L. (2009). Schottky-gated probe-free ZnO nanowire biosensor. Advanced Materials, 21, 4975–4978.CrossRefGoogle Scholar
  62. 62.
    Liu, X., Lin, P., Yan, X., Kars, Z., Zhao, Y., Lei, Y., Li, C., Du, H., Zhang, Y. (2012). Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acid. Sensors and Actuators 13.Google Scholar
  63. 63.
    Li, J., Zhang, Y., To, S., You, L., & Sun, Y. (2011). Effect of nanowire number, diameter and doping density on nano-FET biosensor sensitivity. ACS Nano, 5, 6661–6668.CrossRefGoogle Scholar
  64. 64.
    Liu, Y. C., Rieben, N., Iversen, L., Sorensen, B. C., Park, J. W., Nygard, J., et al. (2010). Specific and reversible immobilization of histidine-tagged proteins on functionalized silicon nanowires. Nanotechnology, 21, 245105.CrossRefGoogle Scholar
  65. 65.
    Vu, X. I., Stockmenn, R., Wolfrum, B., Offenhausser, A., & Ingebrandt, S. (2010). Fabrication and application of microfluidic embedded silicon nanowire biochip. Physica Status Solidi A, 207, 850–857.CrossRefGoogle Scholar
  66. 66.
    Tian, R., Regonda, S., Gao, J., Liu, Y., & Hu, W. (2011). Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect-transistor. Lab on a Chip, 11, 1952–1962.CrossRefGoogle Scholar
  67. 67.
    Duan, X., Li, Y., Rajan, N. K., Routenberg, D. A., Modis, Y., & Reed, M. A. (2012). Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nature Nanotechnology, 7, 401–407.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.NASA Ames Research CenterMoffett FieldCaliforniaUSA
  2. 2.Department of Electrical EngineeringPohang University of Science and TechnologyPohangSouth Korea

Personalised recommendations