Skip to main content

Nanowire Field Effect Transistors in Optoelectronics

  • Chapter
  • First Online:
Nanowire Field Effect Transistors: Principles and Applications

Abstract

The nanowire FETs are discussed in this chapter as key components for optoelectronic circuits. The features of photonic devices are elaborated such as light absorption, generation of e–h pairs and the carrier transport, and the parameters dictating sensitivities, e.g., the wavelengths of light and the materials used are examined. Moreover, the 1-D nanostructures as a platform for photodetectors are highlighted, in conjunction with carbon nanotubes, nanobelts, nanoribbons, nanorods and nanowires. Also, the issues are addressed to regarding the process complexities, light absorption and adsorption, nanowire cross-section, quantum efficiency, threshold voltage shifts, the surface to volume ratio, carrier collection, etc. Moreover, the materials used for 1-D photodetector are examined, including compound semiconductors, Sulfides, Selenides, Tellurides, Metal Oxides, Zinc Oxide, Tin Oxide, Copper Oxide, Gallium Oxides and Indium Oxides, etc. These materials are characterized in terms of Schottky and Ohmic contacts, photoluminescence, photoconductivity, efficiency and speed of detection, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FET:

Field effect transistor

CVD:

Chemical vapor deposition

VLS:

Vapor–liquid–solid

References

  1. Soci, C., Zhang, A., Bao, X.-Y., Kim, H., Lo, Y., & Wang, D. (2010). Journal of Nanoscience and Nanotechnology, 10, 1430–1449.

    Article  Google Scholar 

  2. Smith, W. (1873). Nature, 303.

    Google Scholar 

  3. Donati, S. (2000). Photodetector: Devices, circuits, and applications. New Jersey: Prentice Hall PTR.

    Google Scholar 

  4. Sze, S. M., & Ng, K. K. (2007). Physics of semiconductor devices. New Jersey: Wiley.

    Google Scholar 

  5. Razeghi, M., & Rogalski, A. (1996). Semiconductor ultraviolet detector. Journal of Applied Physics, 79, 7433–7473.

    Article  Google Scholar 

  6. Chai, G., Lupan, O., Chow, L., & Heinrich, H. (2009). Crossed zinc oxide nanorods for ultraviolet radiation detection. Sensors and Actuators A, 150, 184–187.

    Article  Google Scholar 

  7. Tredwell, T. J. (1995). Visible array detectors. In M. Bass (Ed.), Handbook of optics. New York: McGraw-Hill.

    Google Scholar 

  8. Kozlowski, L. J., & Kosonocky, W. F. (1995). Infrared detector array. In M. Bass, E. W. Van Styland, P.R. Williams, & W. L. Wolfe (Eds.), Handbook of optics. New York: McGraw-Hill.

    Google Scholar 

  9. Joshi, A. M., & Olsen, G. H. (1995). Photodetection. In Optimal Society of America (Ed.), Handbook of optics. New York: McGraw-Hill.

    Google Scholar 

  10. Shen, G., & Chen, D. (2010). Recent Patent on Nanotechnology, 4, 20–31.

    Google Scholar 

  11. Tans, S. J., Verschueren, A. R. M., & Dekker, C. (1998). Room-temperature transistor based on a single carbon nanotube. Nature, 393, 49–52.

    Google Scholar 

  12. Rosenblatt, S., Yaish, Y., Park, J., Gore, J., Sazonova, V., & McEuen, P. L. (2002). High performance electrolyte gated carbon nanotube transistors. Nano Letters, 2, 869–872.

    Google Scholar 

  13. Freitag, M., Martin, Y., Misewich, J. A., Martel, R., & Avouris, PH. (2003). Photoconductivity of single carbon nanotubes. Nano Letters, 3(8), 1067–1071.

    Google Scholar 

  14. Gao, T., Li, Q. H., & Wang, T. H. (2005). Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Applied Physics Letters, 86, 173105.

    Google Scholar 

  15. Ye, Y., Dai, L., Wen, X., Wu, P., Pen, R., & Qin, G. (2010). Nanoporous electrodeposited versus nanoparticle ZnO porous films of similar roughness for dye sensitized solar cell application. ACS Applied Material Interfaces, 2, 2724–2727.

    Article  Google Scholar 

  16. Fang, X., Hu, L., Huo, K., Gao, B., Zhao, L., Liao, M., et al. (2011). New ultraviolet photodetector based on individual Nb2O5 nanobelts. Advanced Functional Materials, 21, 3907–3915.

    Article  Google Scholar 

  17. Lao, C. S., Park, M. C., Kuang, Q., Deng, Y., Sood, A. K., Polla, D. L., et al. (2007). Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization. Journal of American Chemical Society, 129, 12096–12097.

    Article  Google Scholar 

  18. He, J. H., Lin, Y. H., McConney, M. E., Tsukruk, V. V., Wang, Z. L., & Bao, G. (2007). Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization. Journal of Applied Physics, 102, 084303.

    Article  Google Scholar 

  19. Fang, X., Bando, Y., Liao, M., Zhai, T., Gautam, U. K., Li, L., et al. (2010). An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability. Advanced Functional Materials, 20, 500–508.

    Article  Google Scholar 

  20. Fan, X., Meng, X. M., Zhang, X. H., Zhang, M. L., Jie, J. S., Zhang, W. J., et al. (2009). Formation and photoelectric properties of periodically twinned ZnSe/SiO2 nanocables. Journal of Physical Chemistry C, 113, 834–838.

    Article  Google Scholar 

  21. Li, L., Fang, X., Zhai, T., Liao, M., Gautam, U. K., Wu, X., et al. (2010). Advanced Materials, 22, 4151–4156.

    Google Scholar 

  22. Fang, X., Xiong, S., Zhai, T., Bando, Y., Liao, M., Gautam, U. K., et al. (2009). Advanced Materials, 21, 5016–5021.

    Google Scholar 

  23. Jiang, Y., Zhang, W. J., Jie, J. S., Meng, X. M., Fan, X., & Lee, S. T. (2007). Advanced Functional Materials, 17, 1795–1800.

    Google Scholar 

  24. Jie, J. S., Zhang, W. J., Jiang, Y., Meng, X. M., Li, Y. Q., & Lee, S. T. (2006). Nano Letters, 6, 1887–1892.

    Google Scholar 

  25. Yu, Z., Li, J., O’Connor, D. B., Wang, L.-W., & Barbara, P. F. (2003). Journal of Physics and Chemistry B, 107, 5670–5674.

    Google Scholar 

  26. Kind, H., Yan, H., Messer, B., Law, M., & Yang, P. (2002). Advanced Materials, 14, 158–160.

    Google Scholar 

  27. Kum, M. C., Jung, H., Chartuprayoon, N., Chen, W., Mulchandani, A., & Myung, N. V. (2012). Journal of Physics and Chemistry C, 116, 9202–9208.

    Google Scholar 

  28. Lai, W.-J., Li, S.-S., Lin, C.-C., Kuo, C.-C., Chen, C.-W., Chenb, K.-H., et al. (2010). Scripta Materials, 63, 653–656.

    Google Scholar 

  29. Chen, R. S., Chen, C. A., Tsai, H. Y., Wang, W. C., Huang, Y. S. (2012). Applied Physics Letters, 100, 123108.

    Google Scholar 

  30. Mofor, A. C., Bakin, A., Chejarla, U., Schlenker, E., El-Shaer, A., Wagner, G., et al. (2007). Superlattices and Microstructures, 42, 415–420.

    Google Scholar 

  31. Lu, Y., Dajani, I., & Knize, R. J. (2007). Applied Surface Science, 253, 7851–7854.

    Google Scholar 

  32. Chaia, G., Lupan, O., Chow, L., & Heinrich, H. (2009). Sensors and Actuators A, 150, 184–187.

    Google Scholar 

  33. Liu, N., Fang, G., Zeng, W., Zhou, H., Cheng, F., Zheng, Q., et al. (2010). ACS Applied Material Interfaces, 2, 1973–1979.

    Google Scholar 

  34. Li, Y., Dong, X., Cheng, C., Zhou, X., Zhang, P., Gao, J., et al. (2009). Physica B, 404, 4282–4285.

    Google Scholar 

  35. Soci, C., Zhang, A., Xiang, B., Dayeh, S. A., Aplin, D. P. R., Park, J., et al. (2007). Nano Letters, 7, 1003–1009.

    Google Scholar 

  36. Chen, R.-S., Chen, H. Y., Lu, C.-Y., Chen, K. H., Chen, C.-P., Chen, L. C., et al. (2007). Applied Physics Letters, 91, 223106.

    Google Scholar 

  37. Choi, H. G., Choai, Y.-S., Jo, Y. C., & Kim, H. (2004). Japanese Journal of Applied Physics, 43, 3916–3918.

    Google Scholar 

  38. Ahn, Y., Dunning, J., & Park, J. (2005). Nano Letters, 5, 1367–1370.

    Google Scholar 

  39. Bae, J., Kim, H., Zhang, X.-M., Dang, C. H., Zhang, Y., Choi, Y. J., et al. (2010). Nanotechnology, 21, 095502.

    Google Scholar 

  40. Kim, K.-H., Keem, K., Jeong, D.-Y., Min, B., Cho, K., Kim, H., et al. (2006). Japanese Journal of Applied Physics, 45, 4265–4269.

    Google Scholar 

  41. Servati, P., Colli, A., Hofmann, S., Fu, Y. Q., Beecher, P., Durrani, Z. A. K., et al. (2007). Physica E., 38, 64–66.

    Google Scholar 

  42. Yan, C., Singh, N., Cai, H., Gan, C. L., & Lee, P. S. (2010). ACS Applied Materials Interfaces, 2, 1794–1797.

    Google Scholar 

  43. Ahn, Y. H., & Park, J. (2007). Applied Physics Letters, 91, 162102.

    Google Scholar 

  44. Kim, C.-J., Lee, H.-S., Cho, Y.-J., Kang, K., & Jo, M.-H. (2010). Nano Letters, 10, 2043–2048.

    Google Scholar 

  45. Gates, B., Mayers, B., Cattle, B., & Xia, Y. (2002). Advanced Functional Material, 12, 219–227.

    Google Scholar 

  46. Liao, Z.-M., Hou, C., Zhao, Q., Liu, L.-P., & Yu, D.-P. (2009). Applied Physics Letters, 95, 093104.

    Google Scholar 

  47. Liang, F., & Qian, H. (2009). Materials Chemistry and Physics, 113, 523–526.

    Google Scholar 

  48. Liu, J.-W., Zhu, J.-H., Zhang, C.-L., Liang, H.-W., & Yu, S.-H. (2010). Journal of American Chemical Society, 132, 8945–8952.

    Google Scholar 

  49. Thunich, S., Prechtel, L., Spirkoska, D., Abstreiter, G., Morral, A. F., & Holleitner, A. W. (2009). Applied Physics Letters, 95, 083111.

    Google Scholar 

  50. Cooke, D., Wu, Z., Mei, X., Liu, J., Ruda, H. E., Kavangah, K. L., et al. (2004). Palais des Congres de Montreal, American Physical Society Canada.

    Google Scholar 

  51. Logeeswaran, V. J., Sarkar, A., Islam, M. S., Kobayashi, N. P., Straznicky, J., Li, X., et al. (2008). Applied Physics A, 91, 1–5.

    Google Scholar 

  52. Wang, J., Gudiksen, M. S., Duan, X., Cui, Y., & Lieber, C. M. (2001). Science, 293, 1455–1457.

    Google Scholar 

  53. Han, S., Jin, W., Zhang, D., Tang, T., Li, C., Liu, X., et al. (2004). Chemistry and Physics Letters, 389, 176–180.

    Google Scholar 

  54. Huang, H. M., Chen, R. S., Chen, H. Y., Liu, T. W., Kuo, C. C., Chen, C. P., et al. (2010). Applied Physics Letters, 96, 062104.

    Google Scholar 

  55. Chen, R.-S., Yang, T.-H., Chen, H.-Y., Chen, L.-C., Chen, K.-H., et al. (2009). Applied Physics Letters, 95, 162112.

    Google Scholar 

  56. Kang, M., Lee, J.-S., Sim, S.-K., Kim, H., Min, B., Cho, K., et al. (2004). Japanese Journal of Applied Physics, 43, 6868–6872.

    Google Scholar 

  57. Calarco, R., Marso, M., Richter, T., Aykanat, A. I., Meijers, R., Hart, A., et al. (2005). Nano Letters, 5, 981–984.

    Google Scholar 

  58. Chen, H.-Y., Chen, R.-S., Chang, F.-C., Chen, L.-C., Chen, K.-H., & Yang, Y.-J. (2009). Applied Physics Letters, 95, 143123.

    Google Scholar 

  59. Kouklin, N., Menon, L., Wong, A. Z., Thompson, D. W., Woollam, J. A., Williams, P. F., et al. (2001). Applied Physics Letters, 79, 4423–4425.

    Google Scholar 

  60. Li, Q., & Penner, R. M. (2005). Nano Letters, 5, 1720–1725.

    Google Scholar 

  61. Gu, Y., Romankiewicz, J. P., David, J. K., Lensch, J. L., & Lauhon, L. J. (2006). Nano Letters, 6, 948–952.

    Google Scholar 

  62. Gu, X. W., Shadmi, N., Yarden, T. S., Cohen, H., & Joselevich, E. (2012). Journal of Physics and Chemistry C, 116, 20121–20126.

    Google Scholar 

  63. Kung, S.-C., van der Veer, W. E., Yang, F., Donavan, K. C., & Penner, R. M. (2010). Nano Letters, 10, 1481–1485.

    Google Scholar 

  64. Salfi, J., Philipose, U., de Sousa, C. F., Aouba, S., & Ruda, H. E. (2006). Applied Physics Letters, 89, 261112.

    Google Scholar 

  65. Philipose, U., Ruda, H. E., Shik, A., de Souza, C. F., & Sun, P. (2006). Journal of Applied Physics, 99, 066106.

    Google Scholar 

  66. Hsiao, C. H., Chang, S. J., Wang, S. B., Chang, S. P., Li, T. C., Lin, W. J., et al. (2009). Journal of Electrochemical Society, 156, J73–J76.

    Google Scholar 

  67. Yoon, Y.-J., Park, K.-S., Heo, J.-H., Park, J.-G., Nahm, S., & Choi, K. J. (2010). Journal of Materials Chemistry, 20, 2386–2390.

    Google Scholar 

  68. Wang, J.-J., Cao, F.-F., Jiang, L., Guo, Y.-G., Hu, W.-P., & Wan, L. J. (2009). Journal of American Chemical Society, 131, 15602–15603.

    Google Scholar 

  69. Zhai, T., Fang, X., Liao, M., Xu, X. Li, L., Liu, B., et al. (2010). ACS Nano, 4, 1596–1602.

    Google Scholar 

  70. Cao, Y. L., Liu, Z. T., Chen, L. M., Tang, Y. B., Luo, L. B., Jie, J. S., et al. (2011). Optic Express, 19, 6100–6108.

    Google Scholar 

  71. Meng, Q. F., Jiang, C. B., & Mao, S. X. (2009). Applied Physics Letters, 94, 043111.

    Google Scholar 

  72. Li, Z., Salfi, J., de Souza, C., Sun, P., Nair, S. V., & Ruda, H. E. (2009). Applied Physics Letters, 97, 063510.

    Google Scholar 

  73. Wang, Z. L. (2008). ACS Nano, 2, 1987–1992.

    Google Scholar 

  74. Prades, J. D., Diaz, R. J., Ramirez, F. H., Romero, L. F., Andreu, T., Cirera, A., et al. (2008). Journal of Physics and Chemistry C, 112, 14639–14644.

    Google Scholar 

  75. Kim, W., & Chu, K. S. (2009). Physics Status Solidi A, 206, 179–182.

    Google Scholar 

  76. Li, Y., de Valle, F., Simonnet, M., Yamada, I., & Delaunay, J.-J. (2009). Nanotechnology, 20, 045501.

    Google Scholar 

  77. Kim, D., Kim, Y.-K., Park, S. C., Ha, J. S., Huh, J., Na, J., et al. (2009). Applied Physics Letters, 95, 043107.

    Google Scholar 

  78. Prades, J. D., Ramirez, F. H., Diaz, R. J., Manzanars, M., Andreu, T., Cirera, A., et al. (2008). Nanotechnology, 19, 465501.

    Google Scholar 

  79. Liao, L., Yan, B., Hao, Y. F., Xing, G. Z., Liu, J. P., Zhao, B.C., et al. (2009). Applied Physics Letters, 94, 113106.

    Google Scholar 

  80. Feng, P., Zhang, J. Y., Li, Q. H., & Wang, T. H. (2006). Applied Physics Letters, 88, 153107.

    Google Scholar 

  81. Zhang, D., Li, C., Han, S., Liu, X., Tang, T., Jin, W., et al. (2003). Applied Physics A, 77, 163–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Shaygan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shaygan, M., Meyyappan, M., Lee, JS. (2014). Nanowire Field Effect Transistors in Optoelectronics. In: Kim, D., Jeong, YH. (eds) Nanowire Field Effect Transistors: Principles and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8124-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8124-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8123-2

  • Online ISBN: 978-1-4614-8124-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics