Skip to main content

Characterization of Nanowire Devices Under Electrostatic Discharge Stress Conditions

  • Chapter
  • First Online:
  • 2160 Accesses

Abstract

Discussed in this chapter is the electrostatic discharge (ESD) as the pervasive threat from fabrication, packaging to assembly operation of IC. The ESD robustness of the gate-all-around Silicon nanowire FETs and poly-Si nanowire thin-film FETs is characterized and compared with other types of FETs including bulk/SOI FinFETs and MOSFETs. The ESD performance is specified in terms of the figures of merit such as the failure current, trigger voltage, on-state resistance, leakage current, and failure current density, etc. By using these figures of merits, the ESD performance of nanowire FETs is characterized as a function of gate length, channel shape and material, operation modes (bipolar or diode), process variation, and layout topologies. Moreover, the failure mechanism of nanowire FETs subject to ESD stresses is investigated by means of electrical characterization, optical microscopic observation, and failure analysis. Finally, the optimal nanowire structure and design window are proposed in the light of the ESD performance evaluations presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ESD:

Electrostatic discharge

IC:

Integrated circuits

SOI:

Silicon-on-insulator

HBM:

Human body model

TLP:

Transmission line pulsing

NWTFT:

Nanowire thin-film transistor

NW:

Nanowire

GAA NWFET:

Gate-all-around silicon nanowire field-effect transistor

FOM:

Figure of merit

SCS:

Semiconductor characterization system

References

  1. Semenov, O., Sarbishaei, H., & Sachdev, M. (2008). ESD protection device and circuit design for advanced CMOS technologies. Berlin: Springer.

    Book  Google Scholar 

  2. Wagner, R., Hawkins, C., & Soden, J. (1993). Extent and cost of EOS/ESD damage in an IC manufacturing process. In Proceedings EOS/ESD Symposium, (pp. 49–49).

    Google Scholar 

  3. Green, W. D. T. (1988). A review of EOS/ESD field failures in military equipment. In Proceedings EOS/ESD Symposium, (pp. 7–13).

    Google Scholar 

  4. Russ, C. (1999) ESD Protection devices for CMOS technologies: Processing impact, modeling, and testing issues, PhD, Technical University Munich.

    Google Scholar 

  5. Huang, J. B., Wang, G. (2001). ESD protection design for advanced CMOS. In International Symposium on Optoelectonics and Microelectronics (pp. 123–131).

    Google Scholar 

  6. Liu, W., Liou, J. J., Chung, A., Jeong, Y. H., Chen, W. C., & Lin, H. C. (2009). Electrostatic discharge robustness of Si nanowire field-effect transistors. Electron Device Letters, IEEE, 30, 969–971.

    Article  Google Scholar 

  7. Liu, W., Liou, J., Jiang, Y., Singh, N., Lo, G., Chung, J., et al. (2010). Investigation of sub-10-nm diameter, gate-all-around nanowire field-effect transistors for electrostatic discharge applications. Nanotechnology, IEEE Transactions on, 9, 352–354.

    Article  Google Scholar 

  8. Liu, W., Liou, J. J., Jiang, Y., Singh, N., Lo, G., Chung, J., et al. (2010). Failure analysis of Si nanowire field-effect transistors subject to electrostatic discharge stresses. Electron Device Letters, IEEE, 31, 915–917.

    Article  Google Scholar 

  9. Lin, H. C., Lee, M. H., Su, C. J., Huang, T. Y., Lee, C., & Yang, Y. S. (2005). A simple and low-cost method to fabricate TFTs with poly-Si nanowire channel. Electron Device Letters, IEEE, 26, 643–645.

    Article  Google Scholar 

  10. Su, C. J., Lin, H. C., Tsai, H. H., Huang, T. Y., & Ni, W. X. (2007) Fabrication and characterization of poly-Si nanowire devices with performance enhancement techniques. In International Symposium on VLSI Technology, Systems and Applications (pp. 1–2).

    Google Scholar 

  11. Amerasekera, A., & Duvvury, C. (1995). The impact of technology scaling on ESD robustness and protection circuit design. Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on, 18, 314–320.

    Article  Google Scholar 

  12. Okushima, M., Shinzawa, T., & Morishita, Y. (2007). Layout technique to alleviate soft failure for short pitch multi finger ESD protection devices. in Proceedings EOS/ESD Symposium (pp. 1A. 5-1-1A. 5–10).

    Google Scholar 

  13. Wang, F. S., Tsai, M. J., & Cheng, H. C. (1995). The effects of NH3 plasma passivation on polysilicon thin-film transistors. Electron Device Letters, IEEE, 16, 503–505.

    Article  Google Scholar 

  14. Hsu, H. H., Lin, H. C., Chan, L., & Huang, T. Y. (2009). Threshold-voltage fluctuation of double-gated Poly-Si nanowire field-effect transistor. Electron Device Letters, IEEE, 30, 243–245.

    Article  Google Scholar 

  15. Jiang, Y., Liow, T., Singh, N., Tan, L., Lo, G., Chan, D., & Kwong, D. (2008). Nanowire FETs for low power CMOS applications featuring novel gate-all-around single metal FUSI gates with dual Φm and VT tune-ability. In International Electron Devices Meeting (IEDM), (pp. 1–4).

    Google Scholar 

  16. Singh, N., Agarwal, A., Bera, L., Liow, T., Yang, R., Rustagi, S., et al. (2006). High-performance fully depleted silicon nanowire (diameter ≤5 nm) gate-all-around CMOS devices. Electron Device Letters, IEEE, 27, 383–386.

    Article  Google Scholar 

  17. Gossner, H., (2004) ESD protection for the deep sub micron regime-a challenge for design methodology. In Proceedings of the International Conference on VLSI Design (pp. 809–818).

    Google Scholar 

  18. Russ, C. (2008). ESD issues in advanced CMOS bulk and FinFET technologies: Processing, protection devices and circuit strategies. Microelectronics Reliability, 48, 1403–1411.

    Article  Google Scholar 

  19. Amerasekera, A., & Verwey, J. (1992). ESD in integrated circuits. Quality and Reliability Engineering International, 8, 259–272.

    Article  Google Scholar 

  20. Trémouilles, D., Thijs, S., Russ, C., Schneider, J., Duvvury, C., Collaert, N., Linten, D., Scholz, M., Jurczak, M., & Gossner, H. (2007). Understanding the optimization of sub-45 nm FinFET devices for ESD applications. In Proceedings EOS/ESD Symposium, (pp. 7A. 5-1-7A. 5–8).

    Google Scholar 

  21. Anderson, W. R., Eppes, D., & Beebe, S. (2009). Metal and silicon burnout failures from CDM ESD testing. In Proceedings EOS/ESD Symposium, (pp. 1–8).

    Google Scholar 

  22. Duvvury, C., & Amerasekera, A. (1996). State-of-the-art issues for technology and circuit design of ESD protection in CMOS ICs. Semiconductor Science and Technology, 11, 833.

    Article  Google Scholar 

  23. Gossner, H., Russ, C., Siegelin, F., Schneider, J., Schruefer, K., Schulz, T., Duvvury, C., Cleavelin, C. R., & Xiong, W. (2006). Unique ESD failure mechanism in a MuGFET technology. In International Electron Devices Meeting (IEDM), (pp. 1–4).

    Google Scholar 

  24. Chou, H. M., Lee, J. W., & Li, Y. (2007). A floating gate design for electrostatic discharge protection circuits. Integration, the VLSI Journal, 40, 161–166.

    Article  Google Scholar 

  25. Chang, H. H., & Ker, M. D. (1998). Improved output ESD protection by dynamic gate floating design. Electron Devices, IEEE Transactions on, 45, 2076–2078.

    Article  Google Scholar 

  26. Wu, E. Y., Vollertsen, R. P., Sune, J., & La Rosa, G. (2009). Reliability wearout mechanisms in advanced CMOS technologies (vol. 12). Wiley-IEEE Press.

    Google Scholar 

  27. Zhang, L., Wang, R., Zhuge, J., Huang, R., Kim, D. W., Park, D., & Wang, Y. (2008) Impacts of non-negligible electron trapping/detrapping on the NBTI characteristics in silicon nanowire transistors with tin metal gates. In International Electron Devices Meeting (IEDM) (pp. 1–4).

    Google Scholar 

  28. Pompl, T., Wurzer, H., Kerber, M., Wilkins, R., & Eisele, I. (1999) Influence of soft breakdown on NMOSFET device characteristics. In Proceedings International Reliability Physics Symposium (IRPS), pp. 82–87.

    Google Scholar 

  29. Ille, A., Stadler, W., Pompl, T., Gossner, H., Brodbeck, T., Esmark, K., et al. (2009). Reliability aspects of gate oxide under ESD pulse stress. Microelectronics Reliability, 49, 1407–1416.

    Article  Google Scholar 

  30. Park, Y. B., & Schroder, D. K. (1998). Degradation of thin tunnel gate oxide under constant Fowler-Nordheim current stress for a flash EEPROM. Electron Devices, IEEE Transactions on, 45, 1361–1368.

    Article  Google Scholar 

  31. Griffoni, A., Thijs, S., Russ, C., Trémouilles, D., Linten, D., Scholz, M., Collaert, N., Witters, L., Meneghesso, G., & Groeseneken, G. (2009). Next generation bulk FinFET devices and their benefits for ESD robustness. In Proceedings EOS/ESD Symposium (pp. 1–10).

    Google Scholar 

  32. Li, J., Chatty, K., Gauthier, R., Mishra, R., & Russ, C. (2009). Technology scaling of advanced bulk CMOS on-chip ESD protection down to the 32 nm node. In Proceedings EOS/ESD Symposium (pp. 1–7).

    Google Scholar 

  33. Chatty, K., Alvarez, D., Abou-Khalil, M., Russ, C., Li, J., & Gauthier, R. (2008) Investigation of ESD performance of silicide-blocked stacked NMOSFETs in a 45 nm bulk CMOS technology. In Proceedings EOS/ESD Symposium (pp. 304–312).

    Google Scholar 

  34. Alvarez, D., Chatty, K., Russ, C., Abou-Khalil, M. J., Li, J., Gauthier, R., et al. (2009). Design optimization of gate-silicided ESD NMOSFETs in a 45 nm bulk CMOS technology. Microelectronics Reliability, 49, 1417–1423.

    Article  Google Scholar 

  35. Mitra, S., Gauthier, R., Li, J., Abou-Khalil, M., Putnam, C. S., Halbach, R., & Seguin, C. (2008). ESD protection using grounded gate, gate non-silicided (GG-GNS) ESD NFETs in 45 nm SOI technology. In Proceedings EOS/ESD Symposium (pp. 312–316).

    Google Scholar 

  36. Li, J., Alvarez, D., Chatty, K., Abou-Khalil, M. J., Gauthier, R., Russ, C., Seguin, C., & Halbach, R. (2006). Analysis of failure mechanism on gate-silicided and gate-non-silicided, drain/source silicide-blocked ESD NMOSFETs in a 65 nm bulk CMOS technology. In International Symposium on the Physical and Failure Analysis of Integrated Circuits (pp. 276–280).

    Google Scholar 

  37. Chatty, K., Alvarez, D., Gauthier, R., Russ, C., Abou-Khalil, M., & Kwon, B. (2007) Process and design optimization of a protection scheme based on NMOSFETs with ESD implant in 65 nm and 45 nm CMOS technologies. in Proceedings EOS/ESD Symposium, (pp. 7A. 2-1-7A. 2–10).

    Google Scholar 

  38. Russ, C., Gossner, H., Schulz, T., Chaudhary, N., Xiong, W., Marshall, A., et al. (2007). ESD evaluation of the emerging MUGFET technology. Device and Materials Reliability, IEEE Transactions on, 7, 152–161.

    Article  Google Scholar 

  39. Bock, K., Russ, C., Badenes, G., Groeseneken, G., & Deferm, L. (1998). Influence of well profile and gate length on the ESD performance of a fully silicided 0.25 μm CMOS technology. Components, Packaging, and Manufacturing Technology, Part C, IEEE Transactions on, 21, 286–294.

    Article  Google Scholar 

  40. Vinson, J. E., & Liou, J. J. (1998). Electrostatic discharge in semiconductor devices: An overview. Proceedings of the IEEE, (vol. 86, pp. 399–420).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, W., Liou, J.J. (2014). Characterization of Nanowire Devices Under Electrostatic Discharge Stress Conditions. In: Kim, D., Jeong, YH. (eds) Nanowire Field Effect Transistors: Principles and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8124-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8124-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8123-2

  • Online ISBN: 978-1-4614-8124-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics