Skip to main content

Dilute Bismuthides on an InP Platform

  • Chapter
  • First Online:
Bismuth-Containing Compounds

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 186))

Abstract

Incorporating a small amount of bismuth into conventional III–V compounds (GaAs, InGaAs) creates materials known as dilute bismuthides. They have attracted increasing attention over recent years due to their unique optical and electrical properties. They are potential candidates for mid-infrared (mid-IR) devices because of the reduced band gap resulting from valence band anticrossing (VBAC). Meanwhile, they serve as good thermoelectric materials due to the combination of high thermoelectric power factor inherited from InGaAs and the reduced thermal conductivity caused by the incorporation of bismuth. One advantage of InGaBiAs on an InP platform over GaBiAs on GaAs is its possibility to grow a film lattice-matched to the substrate, which is more desirable in optoelectronics. The growth conditions of InGaBiAs on an InP platform by molecular beam epitaxy (MBE) are discussed in details. Similar to GaBiAs growths, low growth temperature and moderate Bi/As ratio are beneficial for bismuth to incorporate. The compositions of InGaBiAs samples are studied by high resolution X-ray diffraction (HRXRD) and Rutherford backscattering spectrometry (RBS). The results from reciprocal space mapping (RSM) indicate that most of the samples are nearly 100 % strained. The band gaps of InGaBiAs are measured by spectrophotometry and modeled by VBAC theory. The good agreement between the experimental and simulation shows an effective band gap reduction due to the incorporation of bismuth. Photo reflectance (PR) and contactless electroreflectance (CER) studies confirm the results from spectrophotometry and indicate the band gap between conduction band and spin orbit is not affected by the variation of bismuth concentration. Unintentionally doped InGaBiAs samples exhibit promising electrical properties comparable to InGaAs and expected lower thermal conductivity. N-type InGaBiAs:Si films with different doping levels show potential application in thermoelectrics and highly conductive materials are promising as contact materials for heterojunction bipolar transistor (HBT) and in other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osamu Wada, H.H.: InP-Based Materials and Devices: Physics and Technology, p. 1. Wiley, New York (1999)

    Google Scholar 

  2. Lee, J.-H., Wu, J., Grossman, J.C.: Enhancing the thermoelectric power factor with highly mismatched isoelectronic doping. Phys. Rev. Lett. 104, 016602 (2010)

    Google Scholar 

  3. Alberi, K., Blacksberg, J., Bell, L.D., Nikzad, S., Yu, K.M., Dubon, O.D., Walukiewicz, W.: Band anticrossing in highly mismatched SnxGe1–x semiconducting alloys, Phys. Rev. B. 77, 073202 (2008)

    Article  Google Scholar 

  4. Vurgaftman, I., Meyer, J.R.: Band parameters for nitrogen-containing semiconductors, J. Appl. Phys. 94, 3675 (2003)

    Article  CAS  Google Scholar 

  5. Wu, J., Walukiewicz, W., Yu, K.M., Denlinger, J.D., Shan, W., Ager III, J.W., Kimura, A., Tang, H.F., Kuech, T.F.: Valence band hybridization in N-rich GaN1–xAsx alloys. Phys. Rev. B. 70, 115214 (2004)

    Article  Google Scholar 

  6. Walukiewicz, W., Shan, W., Yu, K., Ager, J., Haller, E., Miotkowski, I., Seong, M., Alawadhi, H., Ramdas, A.: Interaction of localized electronic states with the conduction band: band anticrossing in II-VI semiconductor ternaries. Phys. Rev. Lett. 85, 1552 (2000)

    Article  CAS  Google Scholar 

  7. Lu, X., Beaton, D.A., Lewis, R.B., Tiedje, T., Whitwick, M.B.: Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1–xBix.pdf. Appl. Phys. Lett. 92, 192110 (2008)

    Article  Google Scholar 

  8. Feng, G., Yoshimoto, M., Oe, K., Chayahara, A., Horino, Y.: New III-V Semiconductor InGaAsBi Alloy Grown by Molecular Beam Epitaxy. Jpn. J. Appl. Phys. 44, L1161 (2005)

    Article  CAS  Google Scholar 

  9. Norman, A.G., France, R., Ptak, A.J.: Atomic ordering and phase separation in MBE GaAs1–xBix. J. Vac. Sci. Technol. B. Microelectron. Nanometer. Struct. 29, 3 (2011)

    Article  Google Scholar 

  10. Kini, R.N., Bhusal, L., Ptak, A.J., France, R., Mascarenhas, A.: Electron Hall mobility in GaAsBi. J. Appl. Phys. 106, 043705 (2009)

    Article  Google Scholar 

  11. Feng, G., Oe, K., Yoshimoto, M.: Temperature dependence of Bi behavior in MBE growth of InGaAs/InP. J. Cryst. Growth. 301–302, 121 (2007)

    Article  Google Scholar 

  12. Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008)

    Article  CAS  Google Scholar 

  13. Oe, K.: Characteristics of Semiconductor Alloy GaAs1–xBix. Jpn. J. Appl. Phys. 41, 2801 (2002)

    Article  CAS  Google Scholar 

  14. Petropoulos, J.P., Zhong, Y., Zide, J.M.O.: Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material. Appl. Phys. Lett. 99, 031110 (2011)

    Article  Google Scholar 

  15. Tixier, S., Adamcyk, M., Tiedje, T., Francoeur, S., Mascarenhas, A., Wei, P., Schiettekatte, F.: Molecular beam epitaxy growth of GaAs1–xBix. Appl. Phys. Lett. 82, 2245 (2003)

    Article  CAS  Google Scholar 

  16. Zhong, Y., Dongmo, P.B., Petropoulos, J.P., Zide, J.M.O.: Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1–xBiyAs1–y. Appl. Phys. Lett. 100, 112110 (2012)

    Article  Google Scholar 

  17. Laukkanen, P., Pakarien, J., Ahola-Tuomi, M., Kuzmin, M., Perala, R.E., Vayrynen, I.J.: Structural and electronic properties of Bi-adsorbate-stabilized reconstructions on the InP(100) and GaAsxN1–x(100) surfaces. Phys. Rev. B. 74, 155302 (2006)

    Article  Google Scholar 

  18. Janotti, A., Wei, S.-H., Zhang, S.B.: Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs. Phys. Rev. B. 65, 115203 (2002)

    Article  Google Scholar 

  19. Moram, M.A., Vickers, M.E.: X-ray diffraction of III-nitrides. Rep. Prog. Phys. 72, 036502 (2009)

    Article  Google Scholar 

  20. Hauenstein, R.J., Clemens, B.M., Miles, R.H., Marsh, O.J.: Strain relaxation kinetics in Si1–xGex/Si heterostructures. J. Vac. Sci. Technol. B. Microelectron. Nanometer. Struct. 7, 767 (1989)

    Article  CAS  Google Scholar 

  21. Matthews, J.W., Blaskeslee, A.E.: Defects in epitaxial multilayers. J. Cryst. Growth. 27, 118 (1974)

    CAS  Google Scholar 

  22. Tsao, J., Dodson, B., Picraux, S., Cornelison, D.: Critical stresses for SixGe1–x Strained-Layer Plasticity. Phys. Rev. Lett. 59, 2455 (1987)

    Article  CAS  Google Scholar 

  23. Vardar, G., Warren, M.V., Kang, M., Jeon, S., Goldman, R.S.: Mechanisms of droplet formation during ga(in)asbi molecular beam epitaxy growth, presented at the 28th North American Molecular Beam Epitaxy Conference, San Diego, CA, 2011. North American molecular beam epitaxy (2012)

    Google Scholar 

  24. Yoshimoto, M., Murata, S., Chayahara, A., Horino, Y., Saraie, J., Oe, K.: Metastable GaAsBi alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 42, L1235 (2003)

    Google Scholar 

  25. Swaminathan, V., Macrander, A.T.: Materials Aspects of GaAs and InP Based Structures, p. 27. Prentice Hall, Englewood Cliffs, NJ (1991)

    Google Scholar 

  26. Alberi, K., Dubon, O.D., Walukiewicz, W., Yu, K.M., Bertulis, K., Krotkus, A.: Valence band anticrossing in GaBixAs1–x. Appl. Phys. Lett. 91, 051909 (2007)

    Article  Google Scholar 

  27. Francoeur, S., Seong, M.-J., Mascarenhas, A., Tixier, S., Adamcyk, M., Tiedje, T.: Band gap of GaAs1–xBix, 0<x<3.6%. Appl. Phys. Lett. 82, 3874 (2003)

    Google Scholar 

  28. Nahory, R.E., Pollack, M.A., Johnston Jr., W.D., Barns, R.L.: Band gap versus composition and demonstration of Vegard’s law for In1–xGaxAsyP1–y lattice matched to InP. Appl. Phys. Lett. 33, 659 (1978)

    Article  CAS  Google Scholar 

  29. Ciatto, G., Young, E.C., Glas, F., Chen, J., Mori, R.A., Tiedje, T.: Spatial correlation between Bi atoms in dilute GaAs1–x Bix: From random distribution to Bi pairing and clustering. Phys. Rev. B. 78, 035325 (2008)

    Google Scholar 

  30. Ciatto, G., Thomasset, M., Glas, F., Lu, X., Tiedje, T.: Formation and vanishing of short range ordering in GaAs1–xBix thin films. Phys. Rev. B. 82, 201304(R) (2010)

    Article  Google Scholar 

  31. Kudrawiec, R., Kopaczek, J., Misiewicz, J., Petropoulos, J.P., Zhong, Y., Zide, J.M.O.: Contactless electroreflectance study of E0 and E0 + ΔSO transitions in In0.53Ga0.47BixAs1–x alloys. Appl. Phys. Lett. 99, 251906 (2011)

    Article  Google Scholar 

  32. Misiewicz, J., Kudrawiec, R.: Contactless electroreflectance spectroscopy of optical transitions in low dimensional semiconductor structures. Opto-Electron. Rev. 20, 101 (2012)

    Article  CAS  Google Scholar 

  33. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001)

    Article  CAS  Google Scholar 

  34. Shan, W., Walukiewicz, W., Ager III, J.W., Haller, E.E., Geisz, J.F., Friedman, D.J., Olson, J.M., Kurtz, S.R.: Band anticrossing in GaInNAs alloys. Phys. Rev. Lett. 82, 1221 (1999)

    Google Scholar 

  35. Broderick, C.A., Usman, M., Reilly, E.P.O.: 12-band k . p model for dilute bismide alloys of (In)GaAs derived from supercell calculations. Phys. Status Solidi B 1 (2012)

    Google Scholar 

  36. Kini, R., Ptak, A., Fluegel, B., France, R., Reedy, R., Mascarenhas, A.: Effect of Bi alloying on the hole transport in the dilute bismide alloy GaAs1–x Bix. Phys. Rev. B. 83, 075307 (2011)

    Article  Google Scholar 

  37. Dongmo, P.B., Zhong, Y., Attia, P., Bomberger, C., Cheaito, R., Ihlefeld, J.F., Hopkins, P.E., Zide, J.M.O.: Enhanced Room Temperature Electronic and Thermoelectric Properties of Dilute Bismuthides. J. Appl. Phys. 112, 093710 (2012)

    Article  Google Scholar 

  38. Duzik, A., Thomas, J.C., Millunchick, J.M., Lång, J., Punkkinen, M.P.J., Laukkanen, P.: Surface structure of bismuth terminated GaAs surfaces grown with molecular beam epitaxy, Surf. Sci. (2012). doi:10:1016/j.susc.2012.03.021

  39. Warren, A.C., Woodall, J.M., Freeouf, J.L., Grischkowsky, D., Mclnturff, D.T., Melloch, M.R., Otsuka, N.: Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low temperature molecular beam epitaxy. Appl. Phys. Lett. 57, 1331 (1990)

    Article  CAS  Google Scholar 

  40. Pettinari, G., Polimeni, A., Capizzi, M., Blokland, J.H., Christianen, P.C.M., Maan, J.C., Young, E.C., Tiedje, T.: Influence of bismuth incorporation on the valence and conduction band edges of GaAs1–x Bix. Appl. Phys. Lett. 92, 262105 (2008)

    Google Scholar 

  41. Cahill, D.G., Goodson, K., Majumdar, A.: Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat. Transfer. 124, 223 (2002)

    Google Scholar 

  42. Schmidt, A.J., Chen, X., Chen, G.: Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008)

    Article  Google Scholar 

  43. Cahill, D.G.: Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119 (2004)

    Article  CAS  Google Scholar 

  44. Hopkins, P.E.: Influence of inter- and intraband transitions to electron temperature decay in noble metals after short-pulsed laser heating. J. Heat. Transfer. 132, 122402 (2010)

    Google Scholar 

  45. Touloukian, Y.S.: Thermophysical Properties of matter-Thermal Conductivity: Nonmetallic Solids, vol. 2. Plenum, New York (1970)

    Google Scholar 

  46. Touloukian, Y.S.: Thermophysical Properties of Matter-Specific Heat: Nonmetallic Solids, vol. 5. Plenum, New York (1970)

    Google Scholar 

  47. Touloukian, Y.S., Buyco, E.H.: Thermaophysical Properties of Matter-Specific Heat: Metallic Elements and Alloys, vol. 4. Plenum, New York (1970)

    Google Scholar 

  48. Adachi, S.: Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs and InGaAsP. Wiley, Weinheim (2004)

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge our collaborators: Prof. Robert Kudrawiec and his group from Wroclaw University of Technology and Prof. Eoin O’Reilly and his group from Tyndall National Institute for the help of Sect. 4.4.4.2. We also thank our collaborator: Prof. Patrick Hopkins and his group from University of Virginia with the helpful measurements of thermal conductivity. In addition, we thank Prof. James LeBeau and his group from North Carolina State University for the HAADF-STEM picture. Finally, we acknowledge the US Office of Naval Research for financial support, primarily through the Young Investigator Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Zide .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhong, Y., Dongmo, P., Zide, J. (2013). Dilute Bismuthides on an InP Platform. In: Li, H., Wang, Z. (eds) Bismuth-Containing Compounds. Springer Series in Materials Science, vol 186. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8121-8_4

Download citation

Publish with us

Policies and ethics