Theory of the Electronic Structure of Dilute Bismide Alloys: Tight-Binding and k · p Models

  • Christopher A. Broderick
  • Muhammad Usman
  • Eoin P. O’Reilly
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 186)


Dilute bismide alloys have been the focus of increasing research effort in recent years, due in large part to their novel electronic properties. In particular, they display significant potential for achieving highly efficient photonic devices operating at telecomm wavelengths (1.3–1.5 μm). However, despite substantial progress in the growth and characterisation of dilute bismides, there have been comparatively few theoretical investigations of this novel material system. We summarise here aspects of our theoretical work on the electronic and optical properties of dilute bismide alloys. We present tight-binding and k · p models for the electronic structure of (In)GaBi x As1−x , in which the strong reduction of the band gap (E g ) and increase in the spin-orbit-splitting energy (Δ SO) are explained in terms of a band-anticrossing interaction between the extended states of the host matrix valence band edge and Bi-related resonant impurity states lying in the valence band. Our results, which are in good agreement with the available experimental data, serve to elucidate the origins of the novel electronic properties of dilute bismide alloys and confirm the crossover to an E g < Δ SO regime in GaBi x As1−x for x ≳ 11 %, a condition which should lead to suppressed Auger recombination in long wavelength devices. The dilute bismide kp model is applied to calculate the effect of Bi incorporation on the band structure and optical gain of dilute bismide quantum well structures, and some general trends relevant to laser operation are identified. We also extend our models to the quaternary dilute bismide–nitride alloy GaBi x N y As\( {}_{1-x-y} \)and show how co-alloying of Bi and N offers broad scope for band structure engineering which should lead to the realisation of highly efficient GaAs-based long wavelength photonic devices.


Resonant State Impurity State Auger Recombination Valence Band Structure Band Edge Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



 C.A. Broderick acknowledges financial support from the Irish Research Council under the Embark Initiative (RS/2010/2766). M. Usman and E.P. O’Reilly acknowledge financial support from the European Union Seventh Framework Programme (BIANCHO; FP7-257974) and Science Foundation Ireland (10/IN.1/I299). M. Usman acknowledges the use of computational resources from the National Science Foundation funded Network for Computational Nanotechnology through The tight binding calculations were performed using the NanoElectronic MOdeling (NEMO 3-D) simulator [51, 52].


  1. 1.
    O’Reilly, E.P., Lindsay, A., Klar, P.J., Polimeni, A., Capizzi, M.: Semicond. Sci. Technol. 24, 033001 (2009)CrossRefGoogle Scholar
  2. 2.
    Henini, M.: Dilute Nitride Semiconductors. Elsevier, Oxford (2005)Google Scholar
  3. 3.
    Broderick, C.A., Usman, M., Sweeney, S.J., O’Reilly, E.P.: Semicond. Sci. Technol. 27, 094011 (2012)CrossRefGoogle Scholar
  4. 4.
    Shan, W., Walukiewicz, W., Ager III, J.W., Haller, E.E., Geisz, J.F., Friedman, D.J., Olson, J.M., Kurtz, S.R.: Phys. Rev. Lett. 82, 1221 (1999)CrossRefGoogle Scholar
  5. 5.
    Tixier, S., Webster, S.E., Young, E.C., Teidje, T., Francoeur, S., Mascarenhas, A., Wei, P., Schiettekatte, F.: Appl. Phys. Lett. 86, 112113 (2005)CrossRefGoogle Scholar
  6. 6.
    Alberi, K., Wu, J., Walukiewicz, W., Yu, K.M., Dubon, O.D., Watkins, S.P., Wang, C.X., Liu, X., Cho, Y.J., Furdyna, J.: Phys. Rev. B 75, 045203 (2007)CrossRefGoogle Scholar
  7. 7.
    Fluegel, B., Francoeur, S., Mascarenhas, A., Tixier, S., Young, E.C., Tiedje, T.: Phys. Rev. Lett. 97, 067205 (2006)CrossRefGoogle Scholar
  8. 8.
    Batool, Z., Hild, K., Hosea, T.J.C., Lu, X., Tiedje, T., Sweeney, S.J.: J. Appl. Phys. 111, 113108 (2012)CrossRefGoogle Scholar
  9. 9.
    Higashi, T., Sweeney, S.J., Phillips, A.F., Adams, A.R., O’Reilly, E.P., Uchida, T., Fujii, T.: IEEE J. Sel. Top. Quant. Electron. 5, 413 (1999)CrossRefGoogle Scholar
  10. 10.
    Sweeney, S.J., Adams, A.R., Silver, M., O’Reilly, E.P., Watling, J.R., Walker, A.B., Thijs, P.J.A.: Phys. Stat. Sol. B 525, 211 (1999)Google Scholar
  11. 11.
    Silver, M., O’Reilly, E.P., Adams, A.R.: IEEE. J. Quant. Electron. 33, 1557 (1998)CrossRefGoogle Scholar
  12. 12.
    Adams, A.R., Heasman, K.C., Hilton, J.: Semicond. Sci. Technol. 2, 761 (1987)CrossRefGoogle Scholar
  13. 13.
    Sweeney, S.J., Thijs, P.J.A.: 16th IEEE LEOS meeting, Tucson, Arizona, USA, (2003)Google Scholar
  14. 14.
    Sweeney, S.J., Batool, Z., Hild, K., Jin, S.R., Hosea, T.J.C.: In: Proceedings of the 13th International Conference on Transparent Optical Networks, Stockholm, Sweden, 2011Google Scholar
  15. 15.
    Alberi, K., Dubon, O.D., Walukiewicz, W., Yu, K.M., Bertulis, K., Krotkus, A.: Appl. Phys. Lett. 91, 051909 (2007)CrossRefGoogle Scholar
  16. 16.
    Usman, M., Broderick, C.A., Lindsay, A., O’Reilly, E.P.: Phys. Rev. B 84, 245202 (2011)CrossRefGoogle Scholar
  17. 17.
    Deng, H.X., Li, J., Li, S.S., Peng, H., Xia, J.B., Wang, L.W., Wei, S.H.: Phys. Rev. B 82, 193204 (2010)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Masarenhas, A., Wang, L.-W.: Phys. Rev. B 71, 155201 (2005)CrossRefGoogle Scholar
  19. 19.
    Broderick, C.A., Usman, M., O’Reilly, E.P.: In: Proceedings of the 13th International Conference on Transparent Optical Networks, Stockholm, Sweden, 2011Google Scholar
  20. 20.
    Usman, M., Broderick, C.A., O’Reilly, E.P.: An atomistic understanding of the electronic structure of GaAs-bismides-nitrides (in preparation, 2013)Google Scholar
  21. 21.
    Broderick, C.A., Usman, M., O’Reilly, E.P.: 12- and 14-band k ·p Hamiltonians for dilute bismide and bismide-nitride semiconductor alloys (submitted, 2013)Google Scholar
  22. 22.
    Keating, P.N.: Phys. Rev. 145, 637 (1966)CrossRefGoogle Scholar
  23. 23.
    Lazarenkova, O.L., von Allmen, P., Oyafuso, F., Lee, S., Klimeck, G.: Appl. Phys. Lett. 85, 4193 (2004)CrossRefGoogle Scholar
  24. 24.
    Slater, J.C., Koster, G.F.: Phys. Rev. 94, 1498 (1954)CrossRefGoogle Scholar
  25. 25.
    Perkins, J.D., Mascarenhas, A., Zhang, Y., Geisz, J.F., Friedman, D.J., Olson, J.M., Kurtz, S.R.: Phys. Rev. Lett. 82, 3312 (1999)CrossRefGoogle Scholar
  26. 26.
    Klar, P.J., Grüning, H., Heimbrodt, W., Koch, J., Höhnsdorf, F., Stolz, W., Vicente, P.M.A., Camassel, J.: Appl. Phys. Lett. 76, 3439 (2000)CrossRefGoogle Scholar
  27. 27.
    Lindsay, A., O’Reilly, E.P.: Phys. E 21, 901 (2004)CrossRefGoogle Scholar
  28. 28.
    O’Reilly, E.P., Lindsay, A., Tomić, S., Kamal-Saadi, M.: Semicond. Sci. Technol. 17, 870 (2002)CrossRefGoogle Scholar
  29. 29.
    Lindsay, A., O’Reilly, E.P.: Phys. Rev. Lett. 93, 196402 (2004)CrossRefGoogle Scholar
  30. 30.
    Harris, C., Lindsay, A., O’Reilly, E.P.: J. Phys. Condens. Matter 20, 295211 (2008)CrossRefGoogle Scholar
  31. 31.
    Trumbore, F.A., Gershenzon, M., Thomas, D.G.: Appl. Phys. Lett. 9, 4 (1966)CrossRefGoogle Scholar
  32. 32.
    Fano, U.: Phys. Rev. 124, 1866 (1961)CrossRefGoogle Scholar
  33. 33.
    Fahy, S., Lindsay, A., Ouerdane, H., O’Reilly, E.P.: Phys. Rev. B 74, 035203 (2006)CrossRefGoogle Scholar
  34. 34.
    Janotti, A., Wei, S.H., Zhang, S.B.: Phys. Rev. B 65, 115203 (2002)CrossRefGoogle Scholar
  35. 35.
    Lindsay, A., O’Reilly, E.P.: Phys. Stat. Sol. B 216, 131 (1999)CrossRefGoogle Scholar
  36. 36.
    Benchamekh, R., Nestoklon, M., Jancu, J.M., Voison, P.: Chapter 2, Semiconductor Modelling Techniques. Springer Series in Material Science, vol. 159. Springer, Heidelberg (2012)Google Scholar
  37. 37.
    Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: J. Appl. Phys. 89, 5815 (2001)CrossRefGoogle Scholar
  38. 38.
    Meney, A.T., Gonul, B., O’Reilly, E.P.: Phys. Rev. B 50, 10893 (1994)CrossRefGoogle Scholar
  39. 39.
    Lindsay, A., Tomić, S., O’Reilly, E.P.: Solid State Electron. 47, 443 (2003)CrossRefGoogle Scholar
  40. 40.
    Lu, X., Beaton, D.A., Lewis, R.B., Tiedje, T., Zhang, Y.: Appl. Phys. Lett. 95, 041903 (2009)CrossRefGoogle Scholar
  41. 41.
    Lu, X., Beaton, D.A., Lewis, R.B., Tiedje, T., Whitwick, M.B.: Appl. Phys. Lett. 92, 192110 (2008)CrossRefGoogle Scholar
  42. 42.
    Broderick, C.A., Usman, M., O’Reilly, E.P.: Phys. Stat. Sol. B 250, 773 (2013)Google Scholar
  43. 43.
    Petropoulos, J.P., Zhong, Y., Zide, J.M.O.: Appl. Phys. Lett. 99, 031110 (2011)CrossRefGoogle Scholar
  44. 44.
    Marko, I.P., Batool, Z., Hild, K. Jin, S.R., Hossain, N., Hosea, T.J.C., Petropoulos, J.P. Zhong, Y., Dongmo,P.B., Zide, J.M.O., Sweeney, S.J.: Appl. Phys. Lett. 101, 221108 (2012)Google Scholar
  45. 45.
    Sweeney, S.J., Jin, S.R.: J. Appl. Phys. 113, 043110 (2012)Google Scholar
  46. 46.
    Tomić, S., O’Reilly, E.P., Fehse, R., Sweeney, S.J., Adams, A.R., Andreev, A.D., Choulis, S.A., Hosea, T.J.C., Riechert, H.: IEEE J. Sel. Top. Quant. Electron. 9, 1228 (2003)CrossRefGoogle Scholar
  47. 47.
    Healy, S.B., O’Reilly, E.P.: IEEE J. Quant. Electron. 42, 608 (2006)CrossRefGoogle Scholar
  48. 48.
    Ahn, D., Chuang, S.L.: IEEE J. Quant. Electron. 26, 13 (1990)CrossRefGoogle Scholar
  49. 49.
    Szmulowicz, F.: Phys. Rev. B 51, 1613 (1995)CrossRefGoogle Scholar
  50. 50.
    Ludewig, P., Knaub, N., Stolz, W., Volz, K.: J. Cryst. Growth (10.1016/j.jcrysgro.2012.07.002, 2012)Google Scholar
  51. 51.
    Klimeck, G., Ahmed, S.S., Bae, H., Kharche, N., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F., Prada, M., Korkusinski, M., Boykin, T.B., Rahman, R.: IEEE Trans. Electron. Dev. 54, 2079 (2007)CrossRefGoogle Scholar
  52. 52.
    Klimeck, G., Ahmed, S.S., Kharche, N., Korkusinski, M., Usman, M., Prada, M., Boykin, T.B.: IEEE Trans. Electron. Dev. 54, 2090 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christopher A. Broderick
    • 1
    • 2
  • Muhammad Usman
    • 1
  • Eoin P. O’Reilly
    • 1
    • 2
  1. 1.Tyndall National Institute, Lee MaltingsCorkIreland
  2. 2.Department of PhysicsUniversity College CorkCorkIreland

Personalised recommendations