Skip to main content

Theory of the Electronic Structure of Dilute Bismide Alloys: Tight-Binding and k · p Models

  • Chapter
  • First Online:
Bismuth-Containing Compounds

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 186))

Abstract

Dilute bismide alloys have been the focus of increasing research effort in recent years, due in large part to their novel electronic properties. In particular, they display significant potential for achieving highly efficient photonic devices operating at telecomm wavelengths (1.3–1.5 μm). However, despite substantial progress in the growth and characterisation of dilute bismides, there have been comparatively few theoretical investigations of this novel material system. We summarise here aspects of our theoretical work on the electronic and optical properties of dilute bismide alloys. We present tight-binding and k · p models for the electronic structure of (In)GaBi x As1−x , in which the strong reduction of the band gap (E g ) and increase in the spin-orbit-splitting energy (Δ SO) are explained in terms of a band-anticrossing interaction between the extended states of the host matrix valence band edge and Bi-related resonant impurity states lying in the valence band. Our results, which are in good agreement with the available experimental data, serve to elucidate the origins of the novel electronic properties of dilute bismide alloys and confirm the crossover to an E g < Δ SO regime in GaBi x As1−x for x ≳ 11 %, a condition which should lead to suppressed Auger recombination in long wavelength devices. The dilute bismide kp model is applied to calculate the effect of Bi incorporation on the band structure and optical gain of dilute bismide quantum well structures, and some general trends relevant to laser operation are identified. We also extend our models to the quaternary dilute bismide–nitride alloy GaBi x N y As\( {}_{1-x-y} \)and show how co-alloying of Bi and N offers broad scope for band structure engineering which should lead to the realisation of highly efficient GaAs-based long wavelength photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Reilly, E.P., Lindsay, A., Klar, P.J., Polimeni, A., Capizzi, M.: Semicond. Sci. Technol. 24, 033001 (2009)

    Article  Google Scholar 

  2. Henini, M.: Dilute Nitride Semiconductors. Elsevier, Oxford (2005)

    Google Scholar 

  3. Broderick, C.A., Usman, M., Sweeney, S.J., O’Reilly, E.P.: Semicond. Sci. Technol. 27, 094011 (2012)

    Article  Google Scholar 

  4. Shan, W., Walukiewicz, W., Ager III, J.W., Haller, E.E., Geisz, J.F., Friedman, D.J., Olson, J.M., Kurtz, S.R.: Phys. Rev. Lett. 82, 1221 (1999)

    Article  CAS  Google Scholar 

  5. Tixier, S., Webster, S.E., Young, E.C., Teidje, T., Francoeur, S., Mascarenhas, A., Wei, P., Schiettekatte, F.: Appl. Phys. Lett. 86, 112113 (2005)

    Article  Google Scholar 

  6. Alberi, K., Wu, J., Walukiewicz, W., Yu, K.M., Dubon, O.D., Watkins, S.P., Wang, C.X., Liu, X., Cho, Y.J., Furdyna, J.: Phys. Rev. B 75, 045203 (2007)

    Article  Google Scholar 

  7. Fluegel, B., Francoeur, S., Mascarenhas, A., Tixier, S., Young, E.C., Tiedje, T.: Phys. Rev. Lett. 97, 067205 (2006)

    Article  CAS  Google Scholar 

  8. Batool, Z., Hild, K., Hosea, T.J.C., Lu, X., Tiedje, T., Sweeney, S.J.: J. Appl. Phys. 111, 113108 (2012)

    Article  Google Scholar 

  9. Higashi, T., Sweeney, S.J., Phillips, A.F., Adams, A.R., O’Reilly, E.P., Uchida, T., Fujii, T.: IEEE J. Sel. Top. Quant. Electron. 5, 413 (1999)

    Article  CAS  Google Scholar 

  10. Sweeney, S.J., Adams, A.R., Silver, M., O’Reilly, E.P., Watling, J.R., Walker, A.B., Thijs, P.J.A.: Phys. Stat. Sol. B 525, 211 (1999)

    Google Scholar 

  11. Silver, M., O’Reilly, E.P., Adams, A.R.: IEEE. J. Quant. Electron. 33, 1557 (1998)

    Article  Google Scholar 

  12. Adams, A.R., Heasman, K.C., Hilton, J.: Semicond. Sci. Technol. 2, 761 (1987)

    Article  CAS  Google Scholar 

  13. Sweeney, S.J., Thijs, P.J.A.: 16th IEEE LEOS meeting, Tucson, Arizona, USA, (2003)

    Google Scholar 

  14. Sweeney, S.J., Batool, Z., Hild, K., Jin, S.R., Hosea, T.J.C.: In: Proceedings of the 13th International Conference on Transparent Optical Networks, Stockholm, Sweden, 2011

    Google Scholar 

  15. Alberi, K., Dubon, O.D., Walukiewicz, W., Yu, K.M., Bertulis, K., Krotkus, A.: Appl. Phys. Lett. 91, 051909 (2007)

    Article  Google Scholar 

  16. Usman, M., Broderick, C.A., Lindsay, A., O’Reilly, E.P.: Phys. Rev. B 84, 245202 (2011)

    Article  Google Scholar 

  17. Deng, H.X., Li, J., Li, S.S., Peng, H., Xia, J.B., Wang, L.W., Wei, S.H.: Phys. Rev. B 82, 193204 (2010)

    Article  Google Scholar 

  18. Zhang, Y., Masarenhas, A., Wang, L.-W.: Phys. Rev. B 71, 155201 (2005)

    Article  Google Scholar 

  19. Broderick, C.A., Usman, M., O’Reilly, E.P.: In: Proceedings of the 13th International Conference on Transparent Optical Networks, Stockholm, Sweden, 2011

    Google Scholar 

  20. Usman, M., Broderick, C.A., O’Reilly, E.P.: An atomistic understanding of the electronic structure of GaAs-bismides-nitrides (in preparation, 2013)

    Google Scholar 

  21. Broderick, C.A., Usman, M., O’Reilly, E.P.: 12- and 14-band k ·p Hamiltonians for dilute bismide and bismide-nitride semiconductor alloys (submitted, 2013)

    Google Scholar 

  22. Keating, P.N.: Phys. Rev. 145, 637 (1966)

    Article  CAS  Google Scholar 

  23. Lazarenkova, O.L., von Allmen, P., Oyafuso, F., Lee, S., Klimeck, G.: Appl. Phys. Lett. 85, 4193 (2004)

    Article  CAS  Google Scholar 

  24. Slater, J.C., Koster, G.F.: Phys. Rev. 94, 1498 (1954)

    Article  CAS  Google Scholar 

  25. Perkins, J.D., Mascarenhas, A., Zhang, Y., Geisz, J.F., Friedman, D.J., Olson, J.M., Kurtz, S.R.: Phys. Rev. Lett. 82, 3312 (1999)

    Article  CAS  Google Scholar 

  26. Klar, P.J., Grüning, H., Heimbrodt, W., Koch, J., Höhnsdorf, F., Stolz, W., Vicente, P.M.A., Camassel, J.: Appl. Phys. Lett. 76, 3439 (2000)

    Article  CAS  Google Scholar 

  27. Lindsay, A., O’Reilly, E.P.: Phys. E 21, 901 (2004)

    Article  CAS  Google Scholar 

  28. O’Reilly, E.P., Lindsay, A., Tomić, S., Kamal-Saadi, M.: Semicond. Sci. Technol. 17, 870 (2002)

    Article  Google Scholar 

  29. Lindsay, A., O’Reilly, E.P.: Phys. Rev. Lett. 93, 196402 (2004)

    Article  CAS  Google Scholar 

  30. Harris, C., Lindsay, A., O’Reilly, E.P.: J. Phys. Condens. Matter 20, 295211 (2008)

    Article  Google Scholar 

  31. Trumbore, F.A., Gershenzon, M., Thomas, D.G.: Appl. Phys. Lett. 9, 4 (1966)

    Article  CAS  Google Scholar 

  32. Fano, U.: Phys. Rev. 124, 1866 (1961)

    Article  CAS  Google Scholar 

  33. Fahy, S., Lindsay, A., Ouerdane, H., O’Reilly, E.P.: Phys. Rev. B 74, 035203 (2006)

    Article  Google Scholar 

  34. Janotti, A., Wei, S.H., Zhang, S.B.: Phys. Rev. B 65, 115203 (2002)

    Article  Google Scholar 

  35. Lindsay, A., O’Reilly, E.P.: Phys. Stat. Sol. B 216, 131 (1999)

    Article  Google Scholar 

  36. Benchamekh, R., Nestoklon, M., Jancu, J.M., Voison, P.: Chapter 2, Semiconductor Modelling Techniques. Springer Series in Material Science, vol. 159. Springer, Heidelberg (2012)

    Google Scholar 

  37. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: J. Appl. Phys. 89, 5815 (2001)

    Article  CAS  Google Scholar 

  38. Meney, A.T., Gonul, B., O’Reilly, E.P.: Phys. Rev. B 50, 10893 (1994)

    Article  CAS  Google Scholar 

  39. Lindsay, A., Tomić, S., O’Reilly, E.P.: Solid State Electron. 47, 443 (2003)

    Article  CAS  Google Scholar 

  40. Lu, X., Beaton, D.A., Lewis, R.B., Tiedje, T., Zhang, Y.: Appl. Phys. Lett. 95, 041903 (2009)

    Article  Google Scholar 

  41. Lu, X., Beaton, D.A., Lewis, R.B., Tiedje, T., Whitwick, M.B.: Appl. Phys. Lett. 92, 192110 (2008)

    Article  Google Scholar 

  42. Broderick, C.A., Usman, M., O’Reilly, E.P.: Phys. Stat. Sol. B 250, 773 (2013)

    Google Scholar 

  43. Petropoulos, J.P., Zhong, Y., Zide, J.M.O.: Appl. Phys. Lett. 99, 031110 (2011)

    Article  Google Scholar 

  44. Marko, I.P., Batool, Z., Hild, K. Jin, S.R., Hossain, N., Hosea, T.J.C., Petropoulos, J.P. Zhong, Y., Dongmo,P.B., Zide, J.M.O., Sweeney, S.J.: Appl. Phys. Lett. 101, 221108 (2012)

    Google Scholar 

  45. Sweeney, S.J., Jin, S.R.: J. Appl. Phys. 113, 043110 (2012)

    Google Scholar 

  46. Tomić, S., O’Reilly, E.P., Fehse, R., Sweeney, S.J., Adams, A.R., Andreev, A.D., Choulis, S.A., Hosea, T.J.C., Riechert, H.: IEEE J. Sel. Top. Quant. Electron. 9, 1228 (2003)

    Article  Google Scholar 

  47. Healy, S.B., O’Reilly, E.P.: IEEE J. Quant. Electron. 42, 608 (2006)

    Article  CAS  Google Scholar 

  48. Ahn, D., Chuang, S.L.: IEEE J. Quant. Electron. 26, 13 (1990)

    Article  CAS  Google Scholar 

  49. Szmulowicz, F.: Phys. Rev. B 51, 1613 (1995)

    Article  CAS  Google Scholar 

  50. Ludewig, P., Knaub, N., Stolz, W., Volz, K.: J. Cryst. Growth (10.1016/j.jcrysgro.2012.07.002, 2012)

    Google Scholar 

  51. Klimeck, G., Ahmed, S.S., Bae, H., Kharche, N., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F., Prada, M., Korkusinski, M., Boykin, T.B., Rahman, R.: IEEE Trans. Electron. Dev. 54, 2079 (2007)

    Article  CAS  Google Scholar 

  52. Klimeck, G., Ahmed, S.S., Kharche, N., Korkusinski, M., Usman, M., Prada, M., Boykin, T.B.: IEEE Trans. Electron. Dev. 54, 2090 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

 C.A. Broderick acknowledges financial support from the Irish Research Council under the Embark Initiative (RS/2010/2766). M. Usman and E.P. O’Reilly acknowledge financial support from the European Union Seventh Framework Programme (BIANCHO; FP7-257974) and Science Foundation Ireland (10/IN.1/I299). M. Usman acknowledges the use of computational resources from the National Science Foundation funded Network for Computational Nanotechnology through http://www.nanohub.org. The tight binding calculations were performed using the NanoElectronic MOdeling (NEMO 3-D) simulator [51, 52].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Broderick, C.A., Usman, M., O’Reilly, E.P. (2013). Theory of the Electronic Structure of Dilute Bismide Alloys: Tight-Binding and k · p Models. In: Li, H., Wang, Z. (eds) Bismuth-Containing Compounds. Springer Series in Materials Science, vol 186. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8121-8_3

Download citation

Publish with us

Policies and ethics