Electronic and Optical Properties of Domain Walls and Phase Boundaries in Bismuth Ferrite

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 186)


Physical phenomena involving domain walls in BiFeO3 as nanoscale functional elements have recently received considerable attention. Their nanoscopic size and flexible arrangement using thin film growth engineering solutions and applied external electric fields offer unique possibilities for novel concepts in complex oxide nanoelectronics.


Oxygen Vacancy Domain Wall Scanning Tunneling Microscopy Ferroelectric Thin Film Scanning Tunneling Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Imada, M., Fujimori, A., Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998)CrossRefGoogle Scholar
  2. 2.
    Ogale, S.B.: Thin Films and Heterostructures for Oxide Electronics. Springer, New York (2005)Google Scholar
  3. 3.
    Ohtomo, A., Muller, D.A., Grazul, J.L., Wang, H.Y.: Artificial charge-modulationin atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002)Google Scholar
  4. 4.
    Dagotto, E.: When oxides meet face to face. Science 318, 1076–1077 (2007)CrossRefGoogle Scholar
  5. 5.
    Mannhart, J., Schlom, D.G.: Oxide interfaces—an opportunity for electronics. Science 327, 1607–1611 (2010)CrossRefGoogle Scholar
  6. 6.
    Yamada, H., et al.: Engineered interface of magnetic oxides. Science 395, 646–648 (2004)CrossRefGoogle Scholar
  7. 7.
    Zubko, P., Gariglio, S., Gabay, M., Ghosez, P., Triscone, J.-M.: Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141–165 (2011)CrossRefGoogle Scholar
  8. 8.
    Heber, J.: Enter the oxides. Nature 459, 28–30 (2009)CrossRefGoogle Scholar
  9. 9.
    Seidel et al.: (submitted)Google Scholar
  10. 10.
    Zhang, J.X., Xiang, B., He, Q.: Large field-induced strains in a lead-free piezoelectric material. Nat. Nanotechnol. 6, 98 (2011)CrossRefGoogle Scholar
  11. 11.
    Eng, L.M.: Nanoscale domain engineering and characterization of ferroelectric domains. Nanotechnology 10, 405 (1999)CrossRefGoogle Scholar
  12. 12.
    Kalinin, S.V., et al.: Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 73, 056502 (2010)CrossRefGoogle Scholar
  13. 13.
    Gruverman, A., Rodriguez, B.J., Dehoff, C., Waldrep, J.D., Kingon, A.I., Nemanich, R.J., Cross, J.S.: Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl. Phys. Lett. 87, 082902 (2005)CrossRefGoogle Scholar
  14. 14.
    Rodriguez, B.J., Jesse, S., Baddorf, A.P., Zhao, T., Chu, Y.H., Ramesh, R., Eliseev, E.A., Morozovska, A.N., Kalinin, S.V.: Spatially resolved mapping of polarization switching behavior in nanoscale ferroelectrics. Nanotechnology 18, 405701 (2007)CrossRefGoogle Scholar
  15. 15.
    Jungk, T., Hoffmann, A., Soergel, E.: Impact of elasticity on the piezoresponse of adjacent ferroelectric domains investigated by scanning force microscopy. J. Appl. Phys. 102, 084102 (2007)CrossRefGoogle Scholar
  16. 16.
    Choudhury, S., et al.: The influence of 180° ferroelectric domain wall width on the threshold field for wall motion. J. Appl. Phys. 10(4), 084107 (2008)CrossRefGoogle Scholar
  17. 17.
    Yang, C.-H., Seidel, J., Kim, S.Y., Rossen, P.B., Yu, P., Gajek, M., Chu, Y.-H., Martin, L.W., Holcomb, M.B., He, Q., Maksymovych, P., Balke, N., Kalinin, S.V., Baddorf, A.P., Basu, S.R., Scullin, M.L., Ramesh, R.: Electric modulation of conduction in multiferroic Ca-doped BifeO3 films. Nat. Mater. 8, 485 (2009)CrossRefGoogle Scholar
  18. 18.
    Seidel, J., et al.: Prominent electrochromism through vacancy-order melting. Nat. Commun. 3, 799 (2011)CrossRefGoogle Scholar
  19. 19.
    Balke, N., Jesse, S., Morozovska, A., Eliseev, E., Chung, D., Kim, Y., Adamczyk, L., Garcia, R.: Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat. Nanotechnol. 5, 749–754 (2010)CrossRefGoogle Scholar
  20. 20.
    Kumar, A., Ciucci, F., Morozovska, A.N., Kalinin, S.V., Jesse, S.: Nanoscale electrochemistry: Feeling the strain. Nat. Chem. 3, 707–713 (2011)CrossRefGoogle Scholar
  21. 21.
    Rodriguez, B.J., Chu, Y.H., Ramesh, R., Kalinin, S.V.: Ferroelectric domain wall pinning at a bicrystal grain boundary in bismuth ferrite. Appl. Phys. Lett. 93, 142901 (2008)CrossRefGoogle Scholar
  22. 22.
    Watanabe, Y.: Review of Resistance Switching of Ferroelectrics and Oxides in Quest for Unconventional Electronic Mechanisms. Ferroelectrics 349, 190 (2007)CrossRefGoogle Scholar
  23. 23.
    Seidel, J., Martin, L.W., He, Q., Zhan, Q., Chu, Y.-H., Rother, A., Hawkridge, M.E., Maksymovych, P., Yu, P., Gajek, M., Balke, N., Kalinin, S.V., Gemming, S., Wang, F., Catalan, G., Scott, J.F., Spaldin, N.A., Orenstein, J., Ramesh, R.: Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229 (2009)CrossRefGoogle Scholar
  24. 24.
    Seidel, J., Maksymovych, P., Katan, A.J., Batra, Y., He, Q., Baddorf, A.P., Kalinin, S.V., Yang, C.-H., Yang, J.-C., Chu, Y.-H., Salje, E.K.H., Wormeester, H., Salmeron, M., Ramesh, R.: Domain wall conductivity in La-doped BiFeO3. Phys. Rev. Lett. 105, 197603 (2010)CrossRefGoogle Scholar
  25. 25.
    Fan, W., Cao, J., Seidel, J., Gu, Y., Yim, J.W., Barrett, C., Yu, K.M., Ji, J., Ramesh, R., Chen, L.Q., Wu, J.: Large kinetic asymmetry in the metal-insulator transition nucleated at localized and extended defects. Phys. Rev. B 83, 235102 (2011)CrossRefGoogle Scholar
  26. 26.
    Maggio-Aprile, I., Rennet, C., Erb, A., Walker, E., Fischer, O.: Critical currents approaching the depairing limit at a twin boundary in YBa2Cu3O(7-δ). Nature 390, 487–490 (1997)CrossRefGoogle Scholar
  27. 27.
    Wiessner, A., Kirschner, J., Schafer, G., Berghaus, T.H.: Design considerations and performance of a combined scanning tunneling and scanning electron microscope. Rev. Sci. Instrum. 68, 3790 (1997)CrossRefGoogle Scholar
  28. 28.
    Yang, B., Park, N.J., Seo, B.I., Oh, Y.H., Kim, S.J., Hong, S.K., Lee, S.S., Park, Y.J.: Nanoscale imaging of grain orientations and ferroelectric domains in (Bi1−xLax)4Ti3O12 films for ferroelectric memories. Appl. Phys. Lett. 87, 062902 (2005)CrossRefGoogle Scholar
  29. 29.
    Garcia, R.E., Huey, B.D., Blendell, J.E.: Virtual piezoforce microscopy of polycrystalline ferroelectric films. J. Appl. Phys. 100, 064105 (2006)CrossRefGoogle Scholar
  30. 30.
    Chiu, Y.-P., Chen, Y.-T., Huang, B.-C., Shih, M.-C., Yang, J.-C., He, Q., Liang, C.-W., Seidel, J., Chen, Y.-C., Ramesh, R., Chu, Y.-H.: The evolution of local electronic structure across multiferroic domain walls. Adv. Mater. 23, 1530 (2011)CrossRefGoogle Scholar
  31. 31.
    Lubk, A., et al.: Evidence of sharp and diffuse domain walls in BiFeO3 by means of unit-cell-wise strain and polarization maps obtained with high resolution scanning transmission electron microscopy. Phys. Rev. Lett. 109, 047601 (2012)CrossRefGoogle Scholar
  32. 32.
    Farokhipoor, S., Noheda, B.: Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011)CrossRefGoogle Scholar
  33. 33.
    Seidel, J., Singh-Bhalla, G., He, Q., Yang, S.-Y., Chu, Y.-H., Ramesh, R.: Domain wall functionality in BiFeO3. Phase Transit. 86, 53–66 (2013). doi: 10.1080/01411594.2012.695371 CrossRefGoogle Scholar
  34. 34.
    Choi, T., et al.: Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9, 253–258 (2010)CrossRefGoogle Scholar
  35. 35.
    Meier, D., Seidel, J., Cano, A., Delaney, K., Kumagai, Y., Mostovoy, M., Spaldin, N.A., Ramesh, R., Fiebig, M.: Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284 (2012)CrossRefGoogle Scholar
  36. 36.
    Palai, R., Katiyar, R.S., Schmid, H., Tissot, P., Clark, S.J., Robertson, J., Redfern, S.A.T., Catalan, G., Scott, J.F.: β Phase and γ-β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 77, 014110 (2008)CrossRefGoogle Scholar
  37. 37.
    Lubk, A., Gemming, S., Spaldin, N.A.: First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys. Rev. B 80, 104110 (2009)CrossRefGoogle Scholar
  38. 38.
    Meyer, B., Vanderbilt, D.: Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B 65, 104111 (2002)CrossRefGoogle Scholar
  39. 39.
    Hong, L., Soh, A.K., Du, Q.G., Li, J.Y.: Interaction of O vacancies and domain structures in single crystal BaTiO3: two-dimensional ferroelectric model. Phys. Rev. B 7(7), 094104 (2008)CrossRefGoogle Scholar
  40. 40.
    Borisevich, A.Y., et al.: Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4, 6071 (2010)CrossRefGoogle Scholar
  41. 41.
    Guyonnet, J., Gaponenko, I., Gariglio, S., Paruch, P.: Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377 (2011)CrossRefGoogle Scholar
  42. 42.
    Schröder, M.: Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936 (2012)CrossRefGoogle Scholar
  43. 43.
    Zhao, T., Scholl, A., Zavaliche, F., Lee, K., Barry, M., Doran, A., Cruz, M.P., Chu, Y.H., Ederer, C., Spaldin, N.A., Das, R.R., Kim, D.M., Baek, S.H., Eom, C.B., Ramesh, R.: Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823 (2006)CrossRefGoogle Scholar
  44. 44.
    Lebeugle, D., Colson, D., Forget, A., Viret, M., Bataille, A.M., Gukasov, A.: Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008)CrossRefGoogle Scholar
  45. 45.
    Idlis, B.G., Usmanov, M.S.: Effect of domain structure on the energy spectrum of narrow-gap ferroelectric semiconductors. Pis’ma Zh. Eksp. Teor. Fiz. 56(5), 268–271 (1992)Google Scholar
  46. 46.
    Xiao, Y., Shenoy, V.B., Bhattacharya, K.: Depletion layers and domain walls in semiconducting ferroelectric thin films. Phys. Rev. Lett. 9(5), 247603 (2005)CrossRefGoogle Scholar
  47. 47.
    Gureev, T.M.Y., Tagantsev, A.K., Setter, N.: Structure and energy of charged domain walls in ferroelectrics. 18th IEEE ISAF Proceedings, Xian (2009)Google Scholar
  48. 48.
    Aird, A., Salje, E.K.H.: Sheet superconductivity in twin walls: experimental evidence of WO3-x. J. Phys. Condens. Matter 10, L377 (1998)CrossRefGoogle Scholar
  49. 49.
    Scullin, M.L., et al.: Acta Mater. 58, 457 (2010)CrossRefGoogle Scholar
  50. 50.
    Gopalan, V., Dierolf, V., Scrymgeour, D.A.: Defect–domain wall interactions in trigonal ferroelectrics. Annu. Rev. Mater. Res. 37, 449–489 (2007)CrossRefGoogle Scholar
  51. 51.
    Shilo, D., Ravichandran, G., Bhattacharya, K.: Investigation of twin-wall structure at the nanometre scale using atomic force microscopy. Nat. Mater. 3, 453–457 (2004)CrossRefGoogle Scholar
  52. 52.
    Lee, W.T., Salje, E.K.H., Bismayer, U.: Influence of point defects on the distribution of twin wall widths. Phys. Rev. B 7(2), 104116 (2005)CrossRefGoogle Scholar
  53. 53.
    Salje, E.K.H., Zhang, H.: Domain boundary engineering. Phase Transit. 82, 6 (2009)CrossRefGoogle Scholar
  54. 54.
    Zeng, H.R., et al.: Domain wall thickness variations of ferroelectric BaMgF4 single crystals in the tip fields of an atomic force microscope. Phys. Status Solidi (RRL) 2, 3 (2008)CrossRefGoogle Scholar
  55. 55.
    He, L., Vanderbilt, D.: First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B 6(8), 134103 (2003)CrossRefGoogle Scholar
  56. 56.
    Lee, Y.-H., Wu, J.-M., Lai, C.-H.: Influence of La doping in multiferroic properties of BiFeO3 thin films. Appl. Phys. Lett. 88, 042903 (2006)CrossRefGoogle Scholar
  57. 57.
    Yang, C.-H., Kan, D., Takeuchi, I., Nagarajan, V., Seidel, J.: Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953–15962 (2012). doi: 10.1039/C2CP43082G CrossRefGoogle Scholar
  58. 58.
    Qi, X., Dho, J., Tomov, R., Blamire, M.G., MacManus-Driscoll, J.L.: Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005)CrossRefGoogle Scholar
  59. 59.
    Kim, J.K., Kim, S.S., Kim, W.-J., Bhalla, A.S., Guo, R.: Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl. Phys. Lett. 88, 132901 (2006)CrossRefGoogle Scholar
  60. 60.
    Ko, K.T., Jung, M.H., Lee, J.H., Woo, C.S., Chu, K., Seidel, J., Chu, Y.H., Jeong, Y.H., Ramesh, R., Park, J.H., Yang, C.-H.: Concurrent transition of ferroelectric and magnetic ordering around room temperature. Nat. Commun. 2, 567 (2011)CrossRefGoogle Scholar
  61. 61.
    Ramirez, M., et al.: Spin-charge-lattice coupling through resonant multimagnon excitations in multiferroic BiFeO3. Appl. Phys. Lett. 94, 161905 (2009)CrossRefGoogle Scholar
  62. 62.
    Ramirez, M.O., et al.: Two-phonon coupling to the antiferromagnetic phase transition in multiferroic BiFeO3. Appl. Phys. Lett. 92, 022511 (2008)CrossRefGoogle Scholar
  63. 63.
    Zhou, J., Trassin, M., He, Q., Tamura, N., Kunz, N., Cheng, C., Zhang, J., Liang, W.-I., Seidel, J., Hsin, C., Chu, Y.-H., Wu, J.: Directed assembly of nanoscale phase variants in highly strained BiFeO3 thin films. J. Appl. Phys. 112, 064102 (2012)CrossRefGoogle Scholar
  64. 64.
    Yang, S.-Y., Seidel, J., Byrnes, S.J., Shafer, P., Yang, C.-H., Rossell, M.D., Yu, P., Chu, Y.-H., Scott, J.F., Ager III, J.W., Martin, L.W., Ramesh, R.: Above bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143 (2010)CrossRefGoogle Scholar
  65. 65.
    Seidel, J., Fu, D., Yang, S.-Y., Alarcòn-Lladò, E., Wu, J., Ramesh, R., Ager, J.W.: Efficient photovoltaic current generation at ferroelectric domain walls. Phys. Rev. Lett. 107, 126805 (2011)CrossRefGoogle Scholar
  66. 66.
    Seidel, J., Yang, S.-Y., Alarcòn-Lladò, E., Ager, J.W., Ramesh, R.: Nanoscale probing of high photovoltages at 109° domain walls. Ferroelectrics 433, 123 (2012)CrossRefGoogle Scholar
  67. 67.
    Kudo, A., Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009)CrossRefGoogle Scholar
  68. 68.
    Reyren, N., Thiel, S., Caviglia, A.D., Fitting Kourkoutis, L., Hammerl, G., Richter, C., Schneider, C.W., Kopp, T., Rüetschi, A.-S., Jaccard, D., Gaboy, M., Muller, D.A., Triscone, J.-M., Mannhart, J.: Superconducting Interfaces Between Insulating Oxides. Science 317, 1196–1199 (2007)CrossRefGoogle Scholar
  69. 69.
    Logvenov, G., Gozar, A., Bozovic, I.: High-Temperature Superconductivity in a Single Copper-Oxygen Plane. Science 326, 699–702 (2009)CrossRefGoogle Scholar
  70. 70.
    Ye, J.T., Inoue, S., Kobayashi, K., Kasahara, Y., Yuan, H.T., Shimotani, H., Iwasa, Y.: Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125–128 (2010)CrossRefGoogle Scholar
  71. 71.
    Takahashi, K.S., Kawasaki, M., Tokura, Y.: Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3. Appl. Phys. Lett. 79, 1324–1326 (2001)CrossRefGoogle Scholar
  72. 72.
    Koida, T., Lippmaa, M., Fukumura, T., Itaka, K., Matsumoto, Y., Kawasaki, M., Koinuma, H.: Effect of A-site cation ordering on the magnetoelectric properties in [(LaMnO3)m/(SrMnO3)m]n artificial superlattices. Phys. Rev. B 66, 144418 (2002)CrossRefGoogle Scholar
  73. 73.
    Chakhalian, J., Freeland, J.W., Habermeier, H.U., Cristiani, G., Khaliullin, G., Veenendaalvan, M., Keimer, B.: Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114–1117 (2007)CrossRefGoogle Scholar
  74. 74.
    Lyuksyutov, I., Pokrovsky, V.: Ferromagnet-superconductor hybrids. Adv. Phys. 54, 67–136 (2005)CrossRefGoogle Scholar
  75. 75.
    Tsymbal, E.Y., Kohlstedt, H.: Tunneling across a ferroelectric. Science 313, 181 (2006)CrossRefGoogle Scholar
  76. 76.
    Zhuravlev, M.Y., Sabirianov, R., Jaswal, S.S., Tsymbal, E.Y.: Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005)CrossRefGoogle Scholar
  77. 77.
    Dagotto, E.: Nanoscale Phase Separation and Colossal Magnetoresistance. Springer, New York (2003)CrossRefGoogle Scholar
  78. 78.
    Salafranca, J., Yu, R., Dagotto, E.: Conducting Jahn-Teller domain walls in undoped manganites. Phys. Rev. B 8, 245122 (2010)CrossRefGoogle Scholar
  79. 79.
    Goltsev, A.V., Pisarev, R.V., Lottermoser, T., Fiebig, M.: Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3. Phys. Rev. Lett. 90, 177204 (2003)CrossRefGoogle Scholar
  80. 80.
    Gareeva, Z.V., Zvezdin, A.K.: Private communication (2011)Google Scholar
  81. 81.
    Daraktchiev, M., Catalan, G., Scott, J.F.: Landau theory of domain wall magnetoelectricity. Phys. Rev. B 81, 224118 (2010)CrossRefGoogle Scholar
  82. 82.
    Maksymovych, P., Seidel, J., Chu, Y.-H., Baddorf, A., Wu, P., Chen, L.-Q., Kalinin, S.V., Ramesh, R.: Dynamic conductivity of ferroelectric domain walls. Nano Lett. 11, 1906 (2011)CrossRefGoogle Scholar
  83. 83.
    He et al.: Magnetotransport at domain walls in BiFeO3. Phys. Rev. Lett. 108, 067203 (2012)Google Scholar
  84. 84.
    Hong, J., Catalan, G., Fang, D.N., Artacho, E., Scott, J.F.: Topology of the polarization field in ferroelectric nanowires from first principles. Phys. Rev. B 81, 172101 (2010)CrossRefGoogle Scholar
  85. 85.
    Balke et al.: Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat. Phys. 8, 81 (2012)Google Scholar
  86. 86.
    Seidel, J.: Domain walls as nanoscale functional elements. J. Phys. Chem. Lett. 3, 2905 (2012)CrossRefGoogle Scholar
  87. 87.
    Bea, H., Paruch, P.: Multiferroics: a way forward along domain walls. Nat. Mater. 8, 168–169 (2009)CrossRefGoogle Scholar
  88. 88.
    Skumryev, V., Laukhin, V., Fina, I., Marti, X., Sanchez, F., Gospodinov, M., Fontcuberta, J.: Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys. Rev. Lett. 106, 057206 (2011)CrossRefGoogle Scholar
  89. 89.
    Catalan, G., et al.: Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations