The Frontal Lobes and Executive Functioning

  • Tulio M. Otero
  • Lauren A. Barker


The frontal lobes are often referred to as the seat of cognition and higher-order processing that play a role in virtually all domains of neuropsychological functioning; however, the examination of this mysterious cortical area is often plagued with dubiety. The frontal lobes have fascinated and perplexed scientists who study human behavior for decades, yet still remain largely understood (Filley, 2010). They play a role in virtually all neurological and psychiatric disorders (Levine & Craik, 2012) as well as in theories of development in children and adults. The frontal lobes regulate higher-order “executive” cognitive functions needed to successfully perform complex tasks in the environment. They include a number of psychological processes, including the selection and perception of pertinent information; maintenance, retrieval, and manipulation of information in working memory; self-directed behavior, planning, and organization; behavioral regulation and control in response to a changing environment; and appropriate decision-making on the basis of positive and negative outcomes. Dysfunction in the frontal lobes can result in a variety of deficits including distractibility and perseveration, social irresponsibility, lack of initiation, impulsivity, and disinhibition (Chudasama & Robbins, 2006).


Prefrontal Cortex Frontal Lobe Left Hemisphere Developmental Trajectory Dorsolateral Prefrontal Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychology, 8(2), 71–82.PubMedCrossRefGoogle Scholar
  2. Anderson, V. A., Anderson, P., Northam, E., Jacobs, R., & Catroppa, C. (2001). Development of executive functions through late childhood and adolescence in an Australian sample. Developmental Neuropsychology, 20(1), 385–406.PubMedCrossRefGoogle Scholar
  3. Ardila, A. (2008). On the evolutionary origins of executive functions. Brain and Cognition, 68(1), 92–99.PubMedCrossRefGoogle Scholar
  4. Arnsten, A. F. T., & Bao-Ming, L. (2005). Neurobiology of executive functions: Catecholamine influences on prefrontal cortical functions. Biological Psychiatry, 57(11), 1377–1384.PubMedCrossRefGoogle Scholar
  5. Baddeley, A., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (pp. 47–89). Salt Lake City, UT: Academic.Google Scholar
  6. Barricka, T. R., Mackayb, C. E., Primac, S., Maesd, F., Vandermeulend, D., Crowb, T. J., et al. (2005). Automatic analysis of cerebral asymmetry: An exploratory study of the relationship between brain torque and planum temporale asymmetry. NeuroImage, 24, 678–691.CrossRefGoogle Scholar
  7. Baumeister, R. F., Schmeichel, B. J., & Vohs, K. D. (2007). Self-regulation and the executive function: The self as controlling agent. In A. Kruglanski & E. T. Higgins (Eds.), Social psychology: Handbook of basic principles (2nd ed., pp. 516–539). New York: Guilford Press.Google Scholar
  8. Blakemore, S. J., & Choudhury, S. (2006). Development of the adolescent brain: Implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47(3), 296–312.PubMedCrossRefGoogle Scholar
  9. Blinkov, S. M., & Glezer, I. I. (1968). Das Zentralnervensystem in Zahlen und Tabellen. Jena: Fischer.Google Scholar
  10. Blumenfeld, H. (2010). Neuroanatomy through clinical cases (2nd ed.). Sunderland, MA: Sinaeur Associates.Google Scholar
  11. Bonin, G. V. (1950). Essay on the cerebral cortex. Springfield, IL: Charles C. Thomas.Google Scholar
  12. Brocki, K. C., & Bohlin, G. (2004). Executive functions in children aged 6 to 13: A dimensional and developmental study. Developmental Neuropsychology, 26(2), 571–593.PubMedCrossRefGoogle Scholar
  13. Brocki, K. C., Fan, J., & Fossella, J. (2008). Placing neuroanatomical models of executive function in a developmental context: Imaging and imaging-genetic strategies. In D. W. Phaff & B. L. Kieffer (Eds.), Molecular and biophysical mechanisms of arousal, alertness, and attention (pp. 246–255). Boston, MA: Blackwell Publishing.Google Scholar
  14. Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshinrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. In J. M. Fuster (Ed.), The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe (3rd ed.). Philadelphia: Lippincott–Raven.Google Scholar
  15. Burgess, P. W., Gilbert, S. J., & Dumontheil, I. (2007). Function and localization within rostral prefrontal cortex (area 10). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 887–899.PubMedCrossRefGoogle Scholar
  16. Burgess, P. W., Simons, J. S., Dumontheil, I., & Gilbert, S. J. (2005). The gateway hypothesis of rostral prefrontal cortex (area 10) function. In J. Duncan, L. Phillips, & P. McLeod (Eds.), Measuring the mind: Speed, control, and age (pp. 217–248). Oxford: Oxford University Press.CrossRefGoogle Scholar
  17. Christoff, K., & Keramatian, K. (2007). Abstraction of mental representations: Theoretical considerations and neuroscientific evidence. In S. A. Bunge & J. D. Wallis (Eds.), Perspectives on rule-guide behavior (pp. 107–126). Oxford: Oxford University Press.CrossRefGoogle Scholar
  18. Chudasama, Y. (2011). Animal models of prefrontal prefrontal-executive function. Behavioral Neuroscience, 125(3), 327–343.PubMedCrossRefGoogle Scholar
  19. Chudasama, Y., & Robbins, T. W. (2006). Functions of frontostriatal systems in cognition: Comparative neuropsychopharmacological studies in rats, monkeys and humans. Biological Psychology, 73(1), 19–38.PubMedCrossRefGoogle Scholar
  20. Clarke, H. F., Dalley, J. W., Crofts, H. S., Robbins, T. W., & Roberts, A. C. (2004). Cognitive inflexibility after prefrontal serotonin depletion. Science, 304(5672), 878–880.PubMedCrossRefGoogle Scholar
  21. Cohen, J. D., Barch, D. M., Carter, C., & Servan-Schreiber, D. (1999). Context-processing deficits in schizophrenia: Converging evidence from three theoretically motivated cognitive tasks. Journal of Abnormal Psychology, 108, 120–133.PubMedCrossRefGoogle Scholar
  22. Cools, R., Roberts, A. C., & Robbins, T. W. (2008). Serotoninergic regulation of emotional and behavioural control processes. Trends in Cognitive Sciences, 12(1), 31–40.Google Scholar
  23. Crone, E. A., & Westenberg, P. M. (2009). A brain-based account of developmental changes in social decision-making. In M. de Haan & M. R. Gunnar (Eds.), Handbook of developmental social neuroscience (pp. 378–398). New York: Guilford Press.Google Scholar
  24. Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351, 1413–1420.PubMedCrossRefGoogle Scholar
  25. Damasio, A., Anderson, S. W., & Tranel, D. (2011). The frontal lobes. In K. M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (5th ed., pp. 417–465). New York: Oxford University Press.Google Scholar
  26. Delis, D. C., Kaplan, E., & Kramer, J. (2001). Delis-Kaplan executive function system. San Antonio, TX: Psychological Corporation.Google Scholar
  27. Diamond, A. (2006). The early development of executive functions. In E. Bialystok & F. I. M. Craik (Eds.), Lifespan cognition: Mechanisms of change. New York: Oxford University Press.Google Scholar
  28. Diamond, A. (2011). Biological and social influences on cognitive control processes dependent on prefrontal cortex. In O. Braddick, J. Atkinson, & G. Innocenti (Eds.), Progress in brain research (Vol. 189, pp. 319–340). Burlington: Academic.Google Scholar
  29. Divac, I., & Oberg, R. (1992). Subcortical mechanisms in cognition. In G. Vallar, S. F. Cappa, & C. W. Wallesch (Eds.), Neuropsychological disorders associated with subcortical lesions (pp. 42–60). New York: Oxford University Press.Google Scholar
  30. Filley, C. M. (2010). Chapter 35: The frontal lobes. In M. J. Aminoff, F. Boller, & D. F. Swaab (Eds.), Handbook of Clinical Neurology (pp. 557–70). New York: Elsevier.Google Scholar
  31. Fransson, P., Skiöld, B., Horsch, S., Nordell, A., Blennow, M., Lagercrantz, H., et al. (2007). Resting-state networks in the infant brain. Proceedings of the National Academy of Sciences, 104(39), 15531–15536.CrossRefGoogle Scholar
  32. Freeman, W., & Watts, J. (1941). The frontal lobes and consciousness of the self. Psychosomatic Medicine, 3(2), 111–119.Google Scholar
  33. Fuster, J. M. (1997). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe. Philadelphia, PA: Lippincott-Raven.Google Scholar
  34. Fuster, J. M. (2001). The prefrontal cortex—An update: Time is of the essence. Neuron, 30(2), 319–333.PubMedCrossRefGoogle Scholar
  35. Gannon, P. J., Holloway, R. L., Broadfield, D. C., & Braun, A. R. (1998). Asymmetry of chimpanzee planum temporale: Humanlike pattern of Wernicke’s brain language area homolog. Science, 279(5348), 220–222.PubMedCrossRefGoogle Scholar
  36. Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: A review using an integrative framework. Psychological Bulletin, 134(1), 31–60.PubMedCrossRefGoogle Scholar
  37. Gioia, G., Isquith, P., Guy, S., & Kenworthy, L. (1996). Behavior rating inventory of executive function. Lutz, FL: Psychological Assessment Resources.Google Scholar
  38. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179.PubMedCrossRefGoogle Scholar
  39. Gold, A. L., Shin, L. M., Orr, S. P., Carson, M. A., Rauch, S. L., Macklin, M. L., et al. (2011). Decreased regional cerebral blood flow in medial prefrontal cortex during trauma-unrelated stressful imagery in Vietnam veterans with post-traumatic stress disorder. Psychological Medicine, 41(12), 2563–2572.PubMedCrossRefGoogle Scholar
  40. Gold, J. M., Berman, K. F., Randolph, C., Goldberg, E., & Weinberger, D. R. (1996). PET validation of a novel prefrontal task: Delayed response alteration. Neuropsychology, 10, 3–10.Google Scholar
  41. Goldberg, E. (2009). The new executive brain: Frontal lobes in a complex world. New York, NY: Oxford University Press.Google Scholar
  42. Goldberg, E., & Costa, L. D. (1981). Hemisphere differences in the acquisition and use of descriptive systems. Brain and Language, 14, 144–173.PubMedCrossRefGoogle Scholar
  43. Goldstein, S., Naglieri, J. A., Princiotta, D., & Otero, T. M. (2013). Introduction: A history of executive functioning. In S. Goldstein & J. A. Naglieri (Eds.), Handbook of executive functioning. New York, NY: Springer.Google Scholar
  44. Greene, C. M., Braet, W., Johnson, K. A., & Bellgrove, M. (2008). Imaging the genetics of executive function. Biological Psychology, 79(1), 30–42.PubMedCrossRefGoogle Scholar
  45. Gyurak, A., Goodkind, M. S., Madan, A., Kramer, J. H., Miller, B. L., & Levenson, R. W. (2009). Do tests of executive functioning predict ability to down regulate emotions spontaneously and when instructed to suppress? Cognitive, Affective, & Behavioral Neuroscience, 9(2), 144–152.CrossRefGoogle Scholar
  46. Hooper, C. J., Luciana, M., Conklin, H. M., & Yarger, R. S. (2004). Adolescents’ performance on the development of decision-making and ventromedial prefrontal cortex. Developmental Psychology, 40(6), 1148–1158.PubMedCrossRefGoogle Scholar
  47. Huizinga, M., Dolan, C. V., & van der Molen, M. W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44(11), 2017–2036.PubMedCrossRefGoogle Scholar
  48. Hunter, S. J., Edidin, J. P., & Hinkle, C. D. (2012). The developmental neuropsychology of executive functions. In S. J. Hunter & E. P. Sparrow (Eds.), Executive function and dysfunction (pp. 17–36). New York: Cambridge University Press.CrossRefGoogle Scholar
  49. Jacobs, B., Schall, M., Prather, M., Kapler, E., Driscoll, L., Baca, S., et al. (2001). Regional dendritic and spine variation in human cerebral cortex: A quantitative golgi study. Cerebral Cortex, 11(6), 558–571.PubMedCrossRefGoogle Scholar
  50. Johnson, M. H., & de Haan, M. (2011). Developmental cognitive neuroscience: An introduction (3rd ed.). Malden, MA: Wiley-Blackwell.Google Scholar
  51. Kates, W. R., Frederikse, M., Mostofsky, S. H., Folley, B. S., Cooper, K., Mazur-Hopkins, P., et al. (2002). MRI parcellation of the frontal lobe in boys with attention deficit hyperactivity disorder or Tourette syndrome. Psychiatry Research, 116(1–2), 63–81.PubMedCrossRefGoogle Scholar
  52. Kayser, A. S., Allen, D. C., Navarro-Cebrian, A., Mitchell, J. M., & Fields, H. L. (2012). Dopamine, corticostriatal connectivity, and intertemporal choice. The Journal of Neuroscience, 32(27), 9402–9409.PubMedCrossRefGoogle Scholar
  53. Killgore, C. A., Oki, M., & Yurgelun-Todd, D. A. (2001). Sex-specific developmental changes in amygdala responses to affective faces. Neuroreport, 12(2), 427–433.PubMedCrossRefGoogle Scholar
  54. Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302(5648), 1181–1185.PubMedCrossRefGoogle Scholar
  55. Kovács, A. M., & Mehler, J. (2009). Cognitive gains in 7-month-old bilingual infants. Proceedings of the National Academy of Sciences of the United States of America, 106, 6556–6560.PubMedCrossRefGoogle Scholar
  56. Koziol, L. F., & Budding, D. E. (2009). Subcortical structures and cognition: Implications for neuropsychological assessment. New York, NY: Springer.CrossRefGoogle Scholar
  57. Leon-Carrion, J., Garcia-Orza, J., & Perez-Santamaria, F. J. (2004). The development of the inhibitory component of the executive functions in children and adolescents. The International Journal of Neuroscience, 114(10), 1291–1311.PubMedCrossRefGoogle Scholar
  58. Levine, B., & Craik, F. I. (2012). Unifying clinical, experimental, and neuroimaging studies of the human frontal lobes. In B. Levine & F. I. Craik (Eds.), Mind and the frontal lobes: Cognition, behavior, and brain imaging (pp. 3–15). New York, NY: Oxford University Press.Google Scholar
  59. Lezak, M. D., Howieson, D. B., Loring, D. W., Hannay, H. J., & Fischer, J. S. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.Google Scholar
  60. Luciana, M., Conklin, H. M., Cooper, C. J., & Yarger, R. S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Development, 76(3), 697–712.PubMedCrossRefGoogle Scholar
  61. Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A., & Sweeney, J. A. (2004). Maturation of cognitive processes from late childhood to adulthood. Child Development, 75(5), 1357–1372.PubMedCrossRefGoogle Scholar
  62. Mac Master, F. P., Keshavan, M. S., Dick, E. L., & Rosenberg, D. R. (1999). Corpus callosal signal intensity in treatment-naive pediatric obsessive compulsive disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 23(4), 601–612.CrossRefGoogle Scholar
  63. McCloskey, G., & Perkins, L. A. (2013). Essentials of executive functions assessment. Hoboken, NJ: Wiley.Google Scholar
  64. McCloskey, G., Perkins, L. A., & Van Divner, B. R. (2009). Assessment and intervention for executive function difficulties. New York: Routledge.Google Scholar
  65. McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1), 103–107.PubMedCrossRefGoogle Scholar
  66. Merriam, E. P., Thase, M. E., Haas, G. L., Keshavan, M. S., & Sweeney, J. A. (1999). Prefrontal cortical dysfunction in depression determined by Wisconsin Card Sorting Test performance. The American Journal of Psychiatry, 156(5), 780–782.PubMedGoogle Scholar
  67. Miller, E. K., & Wallis, J. D. (2009). Executive function and higher-order cognition: Definition and neural substrates. In L. R. Squire (Ed.), Encyclopedia of neuroscience (Vol. 4, pp. 99–104). Oxford: Academic.CrossRefGoogle Scholar
  68. Neuromodulator. (2012). Encyclopædia Britannica. Retrieved from
  69. Park, S., & Holzman, P. S. (1992). Schizophrenics show spatial working memory deficits. Archives of General Psychiatry, 49(12), 975–982.PubMedCrossRefGoogle Scholar
  70. Purcell, R., Maruff, P., Kyrios, M., & Pantelis, C. (1998). Neuropsychological deficits in obsessive-compulsive disorder: A comparison with unipolar depression, panic disorder, and normal controls. Archives of General Psychiatry, 55(5), 415–423.PubMedCrossRefGoogle Scholar
  71. Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nature Reviews Neuroscience, 5(3), 184–194.PubMedCrossRefGoogle Scholar
  72. Risberg, J. (2006). Evolutionary aspects on the frontal lobes. In J. Risberg & J. Grafman (Eds.), The frontal lobes: Development, function, and pathology. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  73. Robbins, T. W., & Roberts, A. C. (2007). Differential regulation of fronto-executive function by the monoamines and acetylcholine. Cerebral Cortex, 17(Suppl. 1), 151–160.CrossRefGoogle Scholar
  74. Roca, M., Parr, A., Thompson, R., Woolgar, A., Torralva, T., Antoun, N., et al. (2010). Executive function and fluid intelligence after frontal lobe lesions. Brain, 133(Pt 1), 234–247.PubMedCrossRefGoogle Scholar
  75. Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55(1), 11–29.PubMedCrossRefGoogle Scholar
  76. Rucklidge, J. J., & Tannock, R. (2002). Neuropsychological profiles of adolescents with ADHD: Effects of reading difficulties and gender. Journal of Child Psychology and Psychiatry, 43(8), 988–1003.PubMedCrossRefGoogle Scholar
  77. Schenker, N. M., Desgouttes, A. M., & Semendeferi, K. (2005). Neural connectivity and cortical substrates of cognition in hominoids. Journal of Human Evolution, 49(5), 547–569.PubMedCrossRefGoogle Scholar
  78. Schoenemann, P. T., Sheehan, M. J., & Glotzer, D. L. (2005). Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nature Neuroscience, 8(2), 242–252.PubMedCrossRefGoogle Scholar
  79. Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K., & Van Hoesen, G. W. (1998). Limbic frontal cortex in hominoids: A comparative study of area 13. American Journal of Physical Anthropology, 106(2), 129–155.PubMedCrossRefGoogle Scholar
  80. Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K., & Van Hoesen, G. W. (2001). Prefrontal cortex in humans and apes: A comparative study of area 10. American Journal of Physical Anthropology, 114(3), 224–241.PubMedCrossRefGoogle Scholar
  81. Semendeferi, K., & Damasio, H. (2000). The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. Journal of Human Evolution, 38(2), 317–332.PubMedCrossRefGoogle Scholar
  82. Siddiqui, S. V., Chatterjee, U., Kumar, D., Siddiqui, A., & Goyal, N. (2008). Neuropsychology of prefrontal cortex. Indian Journal of Psychiatry, 50(3), 202–208.PubMedCrossRefGoogle Scholar
  83. Sowell, E. R., Delis, D., Stiles, J., & Jernigan, T. L. (2001). Improved memory functioning and frontal lobe maturation between childhood and adolescence: A structural MRI study. Journal of International Neuropsychological Society, 7, 312–322.CrossRefGoogle Scholar
  84. Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309–315.PubMedCrossRefGoogle Scholar
  85. Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2(10), 859–861.PubMedCrossRefGoogle Scholar
  86. Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of Neuroscience, 24(38), 8223–8231.PubMedCrossRefGoogle Scholar
  87. Sowell, E. R., Thompson, P. M., Tessner, K. D., & Toga, A. W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during post-adolescent brain maturation. The Journal of Neuroscience, 21(22), 8819–8829.PubMedGoogle Scholar
  88. Stevens, J., Quittner, A. L., Zuckerman, J. B., & Moore, S. (2002). Behavioral inhibition, self-regulation of motivation, and working memory in children with attention deficit hyperactivity disorder. Developmental Neuropsychology, 21(2), 117–139.PubMedCrossRefGoogle Scholar
  89. Stuss, D. T. (1991). Self, awareness and the frontal lobes: A neuropsychological perspective. In J. Strauss & G. R. Goethals (Eds.), The self: Interdisciplinary approaches (pp. 255–278). New York: Springer.CrossRefGoogle Scholar
  90. Stuss, D. T., & Alexander, M. P. (2007). Is there a dysexecutive system? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 901–915.PubMedCrossRefGoogle Scholar
  91. Tarullo, A. R., Milner, S., & Gunmar, M. R. (2011). Inhibition and exuberance in preschool classrooms: Associations with peer social experiences and changes in cortisol across the preschool years. Developmental Psychology, 47(5), 1374–1388.PubMedCrossRefGoogle Scholar
  92. Teffer, K., & Semendeferi, K. (2012). Human prefrontal cortex: Evolution, development, and pathology. In M. A. Hofman & D. Falk (Eds.), Progress in brain research (pp. 191–218). Amsterdam: Elsevier.Google Scholar
  93. Van Snellenberg, J. X., & Wager, T. D. (2009). Cognitive and motivational functions of the human prefrontal cortex. In A. L. Christensen, D. Bougakov, & E. Goldberg (Eds.), Luria’s legacy in the 21st century (pp. 30–61). New York: Oxford University Press.CrossRefGoogle Scholar
  94. Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V., & Arnsten, A. F. (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nature Neuroscience, 10(3), 376–384.PubMedCrossRefGoogle Scholar
  95. Wang, M., Vijayraghavan, S., & Goldman-Rakic, P. S. (2004). Selective D2 receptor actions on the functional circuitry of working memory. Science, 303(5659), 853–856.PubMedCrossRefGoogle Scholar
  96. Weinberger, D. R., Berman, K. F., & Zec, R. F. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Archives of General Psychiatry, 43(2), 114–124.PubMedCrossRefGoogle Scholar
  97. Welsh, M. C., & Pennington, B. F. (1988). Assessing frontal lobe functioning in children: Views from developmental psychology. Developmental Neuropsychology, 4(3), 199–230.CrossRefGoogle Scholar
  98. Yakovlev, P. A., & Lecours, I. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain in early life (pp. 3–70). Oxford: Blackwell.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tulio M. Otero
    • 1
  • Lauren A. Barker
    • 1
  1. 1.The Chicago School of Professional PsychologyLoyola UniversityChicagoUSA

Personalised recommendations