Skip to main content

Rabies: Neurobiology

  • 824 Accesses

Abstract

Rabies virus is a neurotropic virus that replicates and propagates into the nervous system of the infected host. Successful achievement of the virus cycle from the site of entry (usually due to a bite) up to the site of exit (salivary glands) relies on the preservation of the neuronal network. Once the rabies virus has entered the nervous system, its progression is not interrupted by the host defence mechanisms. This virus has evolved sophisticated strategies to (1) disarm premature destruction of the infected neurons and prolong the life span of the infected neurons, (2) evade the innate immune response launched by the infected neurons, and (3) eliminate the protective T cells migrating into the nervous system. In addition, by targeting the nervous system that has the striking capacity to centrally control the immune response, the rabies virus infection benefits also from disarmed host defences. The successful adaptation of the virus to the mammalian nervous system may explain why rabies is fatal in almost all the cases.

Keywords

  • Rabies virus
  • Neglected diseases
  • Neuroinflammatin
  • Innate immune response
  • IFN
  • PD-L1
  • B7-H1
  • Evasive strategies
  • T cells
  • Apoptosis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-8100-3_14
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-8100-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  • Babault N et al (2011) Peptides targeting the PDZ domain of PTPN4 are efficient inducers of glioblastoma cell death. Structure 19:1518–1524

    CAS  PubMed  Google Scholar 

  • Baloul L, Lafon M (2003) Apoptosis and rabies virus neuroinvasion. Biochimie 85:777–788

    CAS  PubMed  Google Scholar 

  • Baloul L, Camelo S, Lafon M (2004) Up-regulation of Fas ligand (FasL) in the central nervous system: a mechanism of immune evasion by rabies virus. J Neurovirol 10:372–382

    CAS  PubMed  Google Scholar 

  • Barajon I et al (2009) Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 57:1013–1023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blondel D, Kheddache S, Lahaye X, Dianoux L, Chelbi-Alix MK (2010) Resistance to rabies virus infection conferred by the PMLIV isoform. J Virol 84:10719–10726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boivin G, Coulombe Z, Rivest S (2002) Intranasal herpes simplex virus type 2 inoculation causes a profound thymidine kinase dependent cerebral inflammatory response in the mouse hindbrain. Eur J Neurosci 16:29–43

    PubMed  Google Scholar 

  • Bottcher T et al (2003) Differential regulation of Toll-like receptor mRNAs in experimental murine central nervous system infections. Neurosci Lett 344:17–20

    CAS  PubMed  Google Scholar 

  • Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41:242–247

    CAS  PubMed  Google Scholar 

  • Brzozka K, Finke S, Conzelmann KK (2005) Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J Virol 79:7673–7681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brzozka K, Finke S, Conzelmann KK (2006) Inhibition of interferon signaling by rabies virus phosphoprotein P: activation-dependent binding of STAT1 and STAT2. J Virol 80:2675–2683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bsibsi M, Persoon-Deen C, Verwer RW, Meeuwsen S, Ravid R, Van Noort JM (2006) Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 53:688–695

    PubMed  Google Scholar 

  • Camelo S, Lafage M, Lafon M (2000) Absence of the p55 Kd TNF-alpha receptor promotes survival in rabies virus acute encephalitis. J Neurovirol 6:507–518

    CAS  PubMed  Google Scholar 

  • Camelo S, Lafage M, Galelli A, Lafon M (2001) Selective role for the p55 Kd TNF-alpha receptor in immune unresponsiveness induced by an acute viral encephalitis. J Neuroimmunol 113:95–108

    CAS  PubMed  Google Scholar 

  • Cameron JS et al (2007) Toll-like receptor 3 is a potent negative regulator of axonal growth in mammals. J Neurosci 27:13033–13041

    CAS  PubMed  Google Scholar 

  • Carosella ED, Moreau P, Aractingi S, Rouas-Freiss N (2001) HLA-G: a shield against inflammatory aggression. Trends Immunol 22:553–555

    CAS  PubMed  Google Scholar 

  • Charlton KM, Casey GA (1979) Experimental rabies in skunks: immunofluorescence light and electron microscopic studies. Lab Invest 41:36–44

    CAS  PubMed  Google Scholar 

  • Charlton KM, Casey GA (1981) Experimental rabies in skunks: persistence of virus in denervated muscle at the inoculation site. Can J Comp Med 45:357–362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charlton KM, Casey GA, Campbell JB (1984) Experimental rabies in skunks: effects of immunosuppression induced by cyclophosphamide. Can J Comp Med 48:72–77

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chopy D, Detje CN, Lafage M, Kalinke U, Lafon M (2011a) The type I interferon response bridles rabies virus infection and reduces pathogenicity. J Neurovirol 17:353–367

    CAS  PubMed  Google Scholar 

  • Chopy D et al (2011b) Ambivalent role of the innate immune response in rabies virus pathogenesis. J Virol 85:6657–6668

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delhaye S et al (2006) Neurons produce type I interferon during viral encephalitis. Proc Natl Acad Sci USA 103:7835–7840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diebold SS et al (2003) Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424:324–328

    CAS  PubMed  Google Scholar 

  • Dierks RE, Murphy FA, Harrison AK (1969) Extraneural rabies virus infection. Virus development in fox salivary gland. Am J Pathol 54:251–273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dong H et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    CAS  PubMed  Google Scholar 

  • Eisenacher K, Steinberg C, Reindl W, Krug A (2007) The role of viral nucleic acid recognition in dendritic cells for innate and adaptive antiviral immunity. Immunobiology 212:701–714

    PubMed  Google Scholar 

  • Faul EJ, Wanjalla CN, Suthar MS, Gale M, Wirblich C, Schnell MJ (2010) Rabies virus infection induces type I interferon production in an IPS-1 dependent manner while dendritic cell activation relies on IFNAR signaling. PLoS Pathog 6:e1001016

    PubMed Central  PubMed  Google Scholar 

  • Fu ZF et al (1993) Differential effects of rabies and borna disease viruses on immediate-early- and late-response gene expression in brain tissues. J Virol 67:6674–6681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28:12–18

    CAS  PubMed  Google Scholar 

  • Galelli A, Baloul L, Lafon M (2000) Abortive rabies virus central nervous infection is controlled by T lymphocyte local recruitment and induction of apoptosis. J Neurovirol 6:359–372

    CAS  PubMed  Google Scholar 

  • Goethals S, Ydens E, Timmerman V, Janssens S (2010) Toll-like receptor expression in the peripheral nerve. Glia 58:1701–1709

    PubMed  Google Scholar 

  • Gratas C, Tohma Y, Barnas C, Taniere P, Hainaut P, Ohgaki H (1998) Up-regulation of Fas (APO-1/CD95) ligand and down-regulation of Fas expression in human esophageal cancer. Cancer Res 58:2057–2062

    CAS  PubMed  Google Scholar 

  • Guigoni C, Coulon P (2002) Rabies virus is not cytolytic for rat spinal motoneurons in vitro. J Neurovirol 8:306–317

    PubMed  Google Scholar 

  • Hemachudha T, Wacharapluesadee S, Mitrabhakdi E, Wilde H, Morimoto K, Lewis RA (2005) Pathophysiology of human paralytic rabies. J Neurovirol 11:93–100

    CAS  PubMed  Google Scholar 

  • Hicks DJ, Nunez A, Healy DM, Brookes SM, Johnson N, Fooks AR (2009) Comparative pathological study of the murine brain after experimental infection with classical rabies virus and European bat lyssaviruses. J Comp Pathol 140:113–126

    CAS  PubMed  Google Scholar 

  • Hirai K et al (1992) Suppression of cell-mediated immunity by street rabies virus infection. Microbiol Immunol 36:1277–1290

    CAS  PubMed  Google Scholar 

  • Hooper DC, Phares TW, Fabis MJ, Roy A (2009) The production of antibody by invading B cells is required for the clearance of rabies virus from the central nervous system. PLoS Negl Trop Dis 3:e535

    PubMed Central  PubMed  Google Scholar 

  • Hornung V et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997

    PubMed  Google Scholar 

  • Hunter M et al (2010) Immunovirological correlates in human rabies treated with therapeutic coma. J Med Virol 82:1255–1265

    CAS  PubMed  Google Scholar 

  • Jackson AC (2014) Rabies: neurology. In: Bentivoglio M, Cavalheiro EA, Kristensson K, Patel N (eds) Neglected tropical diseases and conditions of the nervous system. Springer, New York

    Google Scholar 

  • Jackson AC, Randle E, Lawrance G, Rossiter JP (2008) Neuronal apoptosis does not play an important role in human rabies encephalitis. J Neurovirol 14:368–375

    CAS  PubMed  Google Scholar 

  • Jackson AC, Kammouni W, Zherebitskaya E, Fernyhough P (2010) Role of oxidative stress in rabies virus infection of adult mouse dorsal root ganglion neurons. J Virol 84:4697–4705

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnston GR, Webster NR (2009) Cytokines and the immunomodulatory function of the vagus nerve. Br J Anaesth 102:453–462

    CAS  PubMed  Google Scholar 

  • Juntrakul S, Ruangvejvorachai P, Shuangshoti S, Wacharapluesadee S, Hemachudha T (2005) Mechanisms of escape phenomenon of spinal cord and brainstem in human rabies. BMC Infect Dis 5:104

    PubMed Central  PubMed  Google Scholar 

  • Kasempimolporn S, Saengseesom W, Mitmoonpitak C, Akesowan S, Sitprija V (1997) Cell-mediated immunosuppression in mice by street rabies virus not restored by calcium ionophore or PMA. Asian Pac J Allergy Immunol 15:127–132

    CAS  PubMed  Google Scholar 

  • Kasempimolporn S, Tirawatnapong T, Saengseesom W, Nookhai S, Sitprija V (2001) Immunosuppression in rabies virus infection mediated by lymphocyte apoptosis. Jpn J Infect Dis 54:144–147

    CAS  PubMed  Google Scholar 

  • Kassis R, Larrous F, Estaquier J, Bourhy H (2004) Lyssavirus matrix protein induces apoptosis by a TRAIL-dependent mechanism involving caspase-8 activation. J Virol 78:6543–6555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim D et al (2007) A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 282:14975–14983

    CAS  PubMed  Google Scholar 

  • Klein RS et al (2005) Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol 79:11457–11466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klingen Y, Conzelmann KK, Finke S (2008) Double-labeled rabies virus: live tracking of enveloped virus transport. J Virol 82:237–245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koedel U et al (2004) MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain 127:1437–1445

    PubMed  Google Scholar 

  • Kojima D, Park CH, Satoh Y, Inoue S, Noguchi A, Oyamada T (2009) Pathology of the spinal cord of C57BL/6J mice infected with rabies virus (CVS-11 strain). J Vet Med Sci 71:319–324

    PubMed  Google Scholar 

  • Kwidzinski E et al (2003) IDO (indolamine 2,3-dioxygenase) expression and function in the CNS. Adv Exp Med Biol 527:113–118

    CAS  PubMed  Google Scholar 

  • Lafon M (2005a) Modulation of the immune response in the nervous system by rabies virus. Curr Top Microbiol Immunol 289:239–258

    CAS  PubMed  Google Scholar 

  • Lafon M (2005b) Rabies virus receptors. J Neurovirol 11:82–87

    CAS  PubMed  Google Scholar 

  • Lafon M (2008) Immune evasion, a critical strategy for rabies virus. Dev Biol (Basel) 131:413–419

    CAS  Google Scholar 

  • Lafon M (2011) Evasive strategies in rabies virus infection. Adv Virus Res 79:33–53

    CAS  PubMed  Google Scholar 

  • Lafon M et al (2005) Modulation of HLA-G expression in human neural cells after neurotropic viral infections. J Virol 79:15226–15237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lafon M, Megret F, Lafage M, Prehaud C (2006) The innate immune facet of brain: human neurons express TLR-3 and sense viral dsRNA. J Mol Neurosci 29:185–194

    CAS  PubMed  Google Scholar 

  • Lafon M et al (2008) Detrimental contribution of the immuno-inhibitor b7-h1 to rabies virus encephalitis. J Immunol 180:7506–7515

    CAS  PubMed  Google Scholar 

  • Laothamatas J et al (2008) Furious and paralytic rabies of canine origin: neuroimaging with virological and cytokine studies. J Neurovirol 14:119–129

    CAS  PubMed  Google Scholar 

  • Larrous F, Gholami A, Mouhamad S, Estaquier J, Bourhy H (2010) Two overlapping domains of a lyssavirus matrix protein that acts on different cell death pathways. J Virol 84:9897–9906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li XQ, Sarmento L, Fu ZF (2005) Degeneration of neuronal processes after infection with pathogenic, but not attenuated, rabies viruses. J Virol 79:10063–10068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L et al (2008) Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320:379–381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma Y et al (2006) Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J Cell Biol 175:209–215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma Y, Haynes RL, Sidman RL, Vartanian T (2007) TLR8: an innate immune receptor in brain, neurons and axons. Cell Cycle 6:2859–2868

    CAS  PubMed  Google Scholar 

  • Masatani T et al (2010) Rabies virus nucleoprotein functions to evade activation of the RIG-I-mediated antiviral response. J Virol 84:4002–4012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masatani T et al (2011) Amino acids at positions 273 and 394 in rabies virus nucleoprotein are important for both evasion of host RIG-I-mediated antiviral response and pathogenicity. Virus Res 155(1):168–174

    CAS  PubMed  Google Scholar 

  • McKimmie CS, Johnson N, Fooks AR, Fazakerley JK (2005) Viruses selectively upregulate Toll-like receptors in the central nervous system. Biochem Biophys Res Commun 336:925–933

    CAS  PubMed  Google Scholar 

  • Megret F et al (2005) Immunopotentiation of the antibody response against influenza HA with apoptotic bodies generated by rabies virus G-ERA protein-driven apoptosis. Vaccine 23:5342–5350

    CAS  PubMed  Google Scholar 

  • Megret F et al (2007) Modulation of HLA-G and HLA-E expression in human neuronal cells after rabies virus or herpes virus simplex type 1 infections. Hum Immunol 68:294–302

    CAS  PubMed  Google Scholar 

  • Menager P et al (2009) Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri Bodies. PLoS Pathog 5:e1000315

    PubMed Central  PubMed  Google Scholar 

  • Nakamichi K, Inoue S, Takasaki T, Morimoto K, Kurane I (2004) Rabies virus stimulates nitric oxide production and CXC chemokine ligand 10 expression in macrophages through activation of extracellular signal-regulated kinases 1 and 2. J Virol 78:9376–9388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3:216–227

    CAS  PubMed  Google Scholar 

  • Nuovo GJ, DeFaria DL, Chanona-Vilchi JG, Zhang Y (2005) Molecular detection of rabies encephalitis and correlation with cytokine expression. Mod Pathol 18(1):62–67

    CAS  PubMed  Google Scholar 

  • Park C et al (2006) TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia 53:248–256

    PubMed  Google Scholar 

  • Peltier DC, Simms A, Farmer JR, Miller DJ (2010) Human neuronal cells possess functional cytoplasmic and TLR-mediated innate immune pathways influenced by phosphatidylinositol-3 kinase signaling. J Immunol 184:7010–7021

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perry LL, Hotchkiss JD, Lodmell DL (1990) Murine susceptibility to street rabies virus is unrelated to induction of host lymphoid depletion. J Immunol 144:3552–3557

    CAS  PubMed  Google Scholar 

  • Phares TW, Kean RB, Mikheeva T, Hooper DC (2006) Regional differences in blood-brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J Immunol 176:7666–7675

    CAS  PubMed  Google Scholar 

  • Phares TW, Stohlman SA, Hinton DR, Atkinson R, Bergmann CC (2010) Enhanced antiviral T cell function in the absence of B7-H1 is insufficient to prevent persistence but exacerbates axonal bystander damage during viral encephalomyelitis. J Immunol 185:5607–5618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pichlmair A et al (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:997–1001

    CAS  PubMed  Google Scholar 

  • Prehaud C, Megret F, Lafage M, Lafon M (2005) Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol 79:12893–12904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prehaud C et al (2010) Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Sci Signal 3:ra5

    PubMed  Google Scholar 

  • Randall RE, Goodbourn S (2008) Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47

    CAS  PubMed  Google Scholar 

  • Rieder M, Conzelmann KK (2009) Rhabdovirus evasion of the interferon system. J Interferon Cytokine Res 29:499–509

    CAS  PubMed  Google Scholar 

  • Rieder M, Brzozka K, Pfaller CK, Cox JH, Stitz L, Conzelmann KK (2011) Genetic dissection of interferon-antagonistic functions of rabies virus phosphoprotein: inhibition of interferon regulatory factor 3 activation is important for pathogenicity. J Virol 85:842–852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossiter JP, Hsu L, Jackson AC (2009) Selective vulnerability of dorsal root ganglia neurons in experimental rabies after peripheral inoculation of CVS-11 in adult mice. Acta Neuropathol 118:249–259

    PubMed  Google Scholar 

  • Rouas-Freiss N, Moreau P, Menier C, Carosella ED (2003) HLA-G in cancer: a way to turn off the immune system. Semin Cancer Biol 13:325–336

    CAS  PubMed  Google Scholar 

  • Roy A, Hooper DC (2007) Lethal silver-haired bat rabies virus infection can be prevented by opening the blood-brain barrier. J Virol 81:7993–7998

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roy A, Phares TW, Koprowski H, Hooper DC (2007) Failure to open the blood-brain barrier and deliver immune effectors to central nervous system tissues leads to the lethal outcome of silver-haired bat rabies virus infection. J Virol 81:1110–1118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scott CA, Rossiter JP, Andrew RD, Jackson AC (2008) Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome of experimental rabies in yellow fluorescent protein-expressing transgenic mice. J Virol 82:513–521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shankar V, Kao M, Hamir AN, Sheng H, Koprowski H, Dietzschold B (1992) Kinetics of virus spread and changes in levels of several cytokine mRNAs in the brain after intranasal infection of rats with Borna disease virus. J Virol 66:992–998

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimizu K, Ito N, Sugiyama M, Minamoto N (2006) Sensitivity of rabies virus to type I interferon is determined by the phosphoprotein gene. Microbiol Immunol 50:975–978

    CAS  PubMed  Google Scholar 

  • Sommereyns C, Paul S, Staeheli P, Michiels T (2008) IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog 4:e1000017

    PubMed Central  PubMed  Google Scholar 

  • Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    CAS  PubMed  Google Scholar 

  • Sugiura N et al (2011) Gene expression analysis of host innate immune responses in the central nervous system following lethal CVS-11 infection in mice. Jpn J Infect Dis 64:463–472

    CAS  PubMed  Google Scholar 

  • Tang SC et al (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci USA 104:13798–13803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terrien E et al (2012) Interference with the PTEN-MAST2 interaction by a viral protein leads to cellular relocalization of PTEN. Sci Signal 5:ra58

    PubMed  Google Scholar 

  • Thoulouze MI, Lafage M, Montano-Hirose JA, Lafon M (1997) Rabies virus infects mouse and human lymphocytes and induces apoptosis. J Virol 71:7372–7380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tobiume M et al (2009) Rabies virus dissemination in neural tissues of autopsy cases due to rabies imported into Japan from the Philippines: immunohistochemistry. Pathol Int 59:555–566

    PubMed  Google Scholar 

  • Torres-Anjel MJ, Volz D, Torres MJ, Turk M, Tshikuka JG (1988) Failure to thrive, wasting syndrome, and immunodeficiency in rabies: a hypophyseal/hypothalamic/thymic axis effect of rabies virus. Rev Infect Dis 10(Suppl 4):S710–S725

    PubMed  Google Scholar 

  • Tracey KJ (2009) Reflex control of immunity. Nat Rev Immunol 9:418–428

    CAS  PubMed  Google Scholar 

  • Tshikuka JG, Torres-Anjel MJ, Blenden DC, Elliott SC (1992) The microepidemiology of wasting syndrome, a common link to diarrheal disease, cancer, rabies, animal models of AIDS, and HIV-AIDS YHAIDS). The feline leukemia virus and rabies virus models. Ann N Y Acad Sci 653:274–296

    CAS  PubMed  Google Scholar 

  • Ugolini G (1995) Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups. J Comp Neurol 356:457–480

    CAS  PubMed  Google Scholar 

  • Ugolini G (2010) Advances in viral transneuronal tracing. J Neurosci Methods 194(1):2–20, Epub ahead of print

    PubMed  Google Scholar 

  • Versteeg GA, Garcia-Sastre A (2010) Viral tricks to grid-lock the type I interferon system. Curr Opin Microbiol 13:508–516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vidy A, El Bougrini J, Chelbi-Alix MK, Blondel D (2007) The nucleocytoplasmic rabies virus P protein counteracts interferon signaling by inhibiting both nuclear accumulation and DNA binding of STAT1. J Virol 81:4255–4263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vuaillat C et al (2008) High CRMP2 expression in peripheral T lymphocytes is associated with recruitment to the brain during virus-induced neuroinflammation. J Neuroimmunol 193:38–51

    CAS  PubMed  Google Scholar 

  • Wang ZW et al (2005) Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol 79:12554–12565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiktor TJ, Doherty PC, Koprowski H (1977a) In vitro evidence of cell-mediated immunity after exposure of mice to both live and inactivated rabies virus. Proc Natl Acad Sci USA 74:334–338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiktor TJ, Doherty PC, Koprowski H (1977b) Suppression of cell-mediated immunity by street rabies virus. J Exp Med 145:1617–1622

    CAS  PubMed  Google Scholar 

  • Zhang B, Chan YK, Lu B, Diamond MS, Klein RS (2008) CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis. J Immunol 180:2641–2649

    CAS  PubMed  Google Scholar 

  • Zhao P et al (2011) Innate immune response gene expression profiles in central nervous system of mice infected with rabies virus. Comp Immunol Microbiol Infect Dis 34(6):503–512

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Lafon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lafon, M. (2014). Rabies: Neurobiology. In: Bentivoglio, M., Cavalheiro, E., Kristensson, K., Patel, N. (eds) Neglected Tropical Diseases and Conditions of the Nervous System. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8100-3_14

Download citation