Skip to main content

Neuronal Arborizations, Spatial Innervation, and Emergent Network Connectivity

  • Chapter
  • First Online:
The Computing Dendrite

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 11))

  • 2168 Accesses

Abstract

Neurons innervate space by their axonal and dendritic arborizations. Synapses can form when axons and dendrites are in close proximity. The geometry of neurons and their numerical densities in space are thus primary factors in the formation of synaptic connectivity of neuronal networks. A simulator of neuronal morphology based on principles of neural development (NETMORPH) has been used to show that realistic network connectivities emerge from realistic neuronal morphologies and simple proximity-based synapse formation rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aćimović J, Mäki-Marttunen T, Havela R, Teppola H, Linne M-L (2011) Modeling of neuronal growth in vitro: comparison of simulation tools NETMORPH and CX3D. EURASIP. J Bioinform Syst Biol 2011, 616382

    Google Scholar 

  • Ascoli G, Krichmar J (2002) L-neuron: a modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing 32–33:1003–1011

    Google Scholar 

  • Ascoli GA (2006) Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nat Rev Neurosci 7:318–324

    Article  PubMed  CAS  Google Scholar 

  • Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27(35):9247–9251

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Marks WB, Ulfhake B (1992) A parsimonious description of motoneuron dendritic morphology using computer simulation. J Neurosci 12:2403–2416

    PubMed  CAS  Google Scholar 

  • Cuntz H, Forstner F, Borst A, Häusser M (2010) One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Comput Biol 6(8):e1000877

    Article  PubMed  Google Scholar 

  • Costa LF, Coelho RC (2005) Growth driven percolations: the dynamics of connectivity in neuronal systems. Eur Phys J B 47:571–581

    Article  Google Scholar 

  • Costa Lda F, Coelho RC (2008) Growth-driven percolations: the dynamics of community formation in neuronal systems. arXiv:q-bio/0411009v1;[q-bio.NC]

    Google Scholar 

  • Costa LF, Manoel ETM, Faucereau F, Chelly J, Van Pelt J, Ramakers GJA (2002) A shape analysis framework for neuromorphometry. Network 13:283–310

    Article  Google Scholar 

  • Eberhard JP, Wanner A, Wittum G (2006) NeuGen: a tool for the generation of realistic morphology of cortical neurons and neuronal networks in 3D. Neurocomputing 70(1–3):327–342

    Article  Google Scholar 

  • Feldmeyer D, Lübke J, Silver RA, Sakmann B (2002) Synaptic connections between layer 4 spiny neurone- layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J Physiol 538:803–822

    Article  PubMed  CAS  Google Scholar 

  • Gillette T, Brown K, Ascoli G (2001) The DIADEM Metric: comparing multiple reconstructions of the same neuron. Neuroinformatics 9:233–245

    Article  Google Scholar 

  • Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54(2):219–235

    Article  PubMed  CAS  Google Scholar 

  • Hellwig B (2000) A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol Cybern 82:111–121

    Article  PubMed  CAS  Google Scholar 

  • Hill SL, Wang Y, Riachi I, Schurmann F, Markram H (2012) Statistical connectivity provides a sufficeint foundations for specific functional conenctivity in neocortical neural circuits. Proc Natl Acad Sci USA 109(42):E2885–E2894

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Sinclair R, Chindapol N, Kaandorp JA, De Schutter E (2012) Geometric theory predicts bifurcations in minimal wiring cost trees in biology are flat. PLoS Comput Biol 8(4):e1002474

    Article  PubMed  CAS  Google Scholar 

  • Koene RA, Tijms B, van Hees P, Postma F, de Ridder S, Ramakers G, van Pelt J, van Ooyen A (2009) NETMORPH: a framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies. Neuroinformatics 7:195–210

    Article  PubMed  Google Scholar 

  • Lamoureux P, Buxbaum RE, Heidemann SR (1998) Axonal outgrowth of cultured neurons is not limited by growth cone competition. J Cell Sci 111:3245–3252

    PubMed  CAS  Google Scholar 

  • Le Bé JV, Silberberg G, Wang Y, Markram H (2007) Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. Cereb Cortex 17:2204–2213

    Google Scholar 

  • Luczak A (2006) Spatial embedding of neuronal trees modeled by diffusive growth. J Neurosci Methods 157:132–141

    Article  PubMed  Google Scholar 

  • Mäki-Marttunen T, Aćimović J, Nykter M, Kesseli J, Ruohonen K, Yli-Harja O, Linne M-L (2011) Information diversity in structure and dynamics of simulated neuronal networks. Front Comput Neurosci

    Google Scholar 

  • Perin R, Berger TK, Markram H (2011) A synaptic organization principle for cortical neuronal groups. Proc Natl Acad Sci USA 108(13):5419–5424

    Article  PubMed  CAS  Google Scholar 

  • Peters A (1979) Thalamic input to the cerebral cortex. Trends Neurosci 2:1183–1185

    Article  Google Scholar 

  • Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491–527

    Article  PubMed  CAS  Google Scholar 

  • Senft S, Ascoli G (1999) Reconstruction of brain networks by algorithmic amplification of morphometry data. Lect Notes Comp Sci 1606:25–33

    Article  Google Scholar 

  • Samsonovich A, Ascoli G (2007) Computational models of dendritic morphology: From parsimonious description to biological insight. In: Laubichler MG, Müller G (eds) Modeling biology, structures, behaviors, evolution. MIT Press, Cambridge, MA, pp 91–113

    Google Scholar 

  • Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3(3):e68

    Article  PubMed  Google Scholar 

  • Torben-Nielsen B, Vanderlooy S, Postma EO (2008a) Non-parametric algorithmic generation of neuronal morphologies. Neuroinformatics 6:257–277

    Article  PubMed  Google Scholar 

  • Torben-Nielsen B, Tuyls K, Postma EO (2008b) EvOL-Neuron: virtual neuron generation. Neurocomputing 71(4–6):963–972

    Article  Google Scholar 

  • Uylings H, Smit G (1975) Three dimensional branching structure of pyramidal cell dendrites. Brain Res 87:55–60

    Article  PubMed  CAS  Google Scholar 

  • Uylings HBM, van Pelt J, Parnavelas JG, Ruiz-Marcos A (1994) Geometrical and topological characteristics in the dendritic development of cortical pyramidal and nonpyramidal neurons. In: van Pelt J, Corner MA, Uylings HBM, Lopes da Silva FH (eds) Progress in brain research (Vol 102), The self-organizing brain: from growth cones to functional networks. Elsevier, Amsterdam, pp 109–123

    Google Scholar 

  • Uylings HBM, van Pelt J (2002) Measures for quantifying dendritic arborizations. Network 13:397–414

    Article  PubMed  Google Scholar 

  • Van Ooyen A (2011) Using theoretical models to analyse neural development. Nat Rev Neurosci 12:311–326

    Article  PubMed  Google Scholar 

  • Van Ooyen A, Graham BP, Ramakers GJA (2001) Competition for tubulin between growing neurites during development. Neurocomputing 38–40:73–78

    Article  Google Scholar 

  • Van Pelt J, Uylings HBM (2002) Branching rates and growth functions in the outgrowth of dendritic branching patterns. Network 13:261–281

    Article  PubMed  Google Scholar 

  • Van Pelt J, Uylings HBM (2003) Growth functions in dendritic outgrowth. Brain and Mind 4:51–65

    Article  Google Scholar 

  • Van Pelt J, Uylings HBM (2005) Natural variability in the geometry of dendritic branching patterns. In: Reeke GN, Poznanski RR, Lindsay KA, Rosenberg JR, Sporns O (eds) Modeling in the neurosciences: from biological systems to neuromimetic robotics. CRC Press, Boca Raton, pp 89–115

    Google Scholar 

  • Van Pelt J, Uylings HBM (2007) Modeling neuronal growth and shape. In: Laubichler MD, Müller GB (eds) Modeling biology – structures, behaviors, evolution. MIT Press, Cambridge, pp 195–215

    Google Scholar 

  • Van Pelt J, Uylings HBM (2012) The flatness of bifurcations in 3D dendritic trees: an optimal design. Front Comput Neurosci 5:54

    PubMed  Google Scholar 

  • Van Pelt J, Van Ooyen A, Uylings HBM (2001) Modeling dendritic geometry and the development of nerve connections. In: de Schutter E, Cannon (CD-ROM) RC (eds) Computational neuroscience: realistic modeling for experimentalist. CRC Press, Boca Raton, pp 179–208

    Google Scholar 

  • Van Pelt J, Carnell A, de Ridder S, Mansvelder HD, van Ooyen A (2010) An algorithm for finding candidate synaptic sites in computer generated networks of neurons with realistic morphologies. Front Comput Neurosci 4:148

    PubMed  Google Scholar 

  • Zubler F, Douglas RA (2009) Framework for modeling the growth and development of neurons and networks. Front Comput Neurosci 3:25

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Netherlands Organization for Scientific Research (NWO) through the Program Computational Life Sciences (grant number 635.100.005), the MC-RTN project NEURoVERS-it (grant number 019247) of the European Union, and the BIO-ICT project SECO (grant number 216593) of the Seventh Framework Programme of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaap van Pelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Pelt, J., Uylings, H.B.M., van Ooyen, A. (2014). Neuronal Arborizations, Spatial Innervation, and Emergent Network Connectivity. In: Cuntz, H., Remme, M., Torben-Nielsen, B. (eds) The Computing Dendrite. Springer Series in Computational Neuroscience, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8094-5_4

Download citation

Publish with us

Policies and ethics