Dendritic Size and Topology Influence Burst Firing in Pyramidal Cells

  • Arjen van Ooyen
  • Ronald A. J. van Elburg
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 11)


Neurons have highly branched dendrites that form characteristic tree-like structures. The morphology of these dendritic arborizations is not fixed and can undergo significant alterations in many pathological conditions. However, little is known about the impact of morphological changes on neuronal activity. Using computational models of pyramidal cells, we study the influence of dendritic tree size and branching structure on burst firing. Burst firing is the generation of two or more action potentials in close succession, a form of neuronal activity that is critically involved in neuronal signaling and synaptic plasticity. We show that there is only a range of dendritic tree sizes that supports burst firing, and that this range is modulated by the branching structure of the tree. Shortening as well as lengthening the dendritic tree, or even just modifying the pattern in which the branches in the tree are connected, can shift the cell’s firing pattern from bursting to tonic firing. The influence of dendritic morphology on burst firing is attributable to the effect that dendritic size and branching pattern have on the average spatial extent of the dendritic tree and the spatiotemporal dynamics of the dendritic membrane potential. Our results suggest that alterations in pyramidal cell morphology, such as those observed in Alzheimer’s disease, mental retardation, epilepsy, and chronic stress, can change neuronal burst firing and thus ultimately affect information processing and cognition.


Pyramidal Cell Firing Pattern Dendritic Tree Interspike Interval Dendritic Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arendt T, Schindler C, Brückner MK, Eschrich K, Bigl V, Zedlick D, Marcova L (1997) Plastic neuronal remodeling is impaired in patients with Alzheimer’s disease carrying apolipoprotein epsilon 4 allele. J Neurosci 17:516–529PubMedGoogle Scholar
  2. Bains JS, Longacher JM, Staley KJ (1999) Reciprocal interaction between CA3 network activity and strength of recurrent collateral synapses. Nat Neurosci 2:720–726PubMedCrossRefGoogle Scholar
  3. Bastian J, Nguyenkim J (2001) Dendritic modulation of burst-like firing in sensory neurons. J Neurophysiol 85:10–22PubMedGoogle Scholar
  4. Bekkers JM, Häusser M (2007) Targeted dendrotomy reveals active and passive contributions of the dendritic tree to synaptic integration and neuronal output. Proc Natl Acad Sci USA 104:11447–11452PubMedCrossRefGoogle Scholar
  5. Belichenko PV, Oldfors A, Hagberg B, Dahlström A (1994) Rett syndrome: 3-D confocal microcospy of cortical pyramidal dendrites and afferents. Neuroreport 5:1509–1513PubMedCrossRefGoogle Scholar
  6. Bilkey D, Schwartzkroin P (1990) Variation in electrophysiology and morphology of hippocampal CA3 pyramidal cells. Brain Res 514:77–83PubMedCrossRefGoogle Scholar
  7. Birtoli B, Ulrich D (2004) Firing mode-dependent synaptic plasticity in rat neocortical pyramidal neurons. J Neurosci 24:4935–4940PubMedCrossRefGoogle Scholar
  8. Brown SM, Henning S, Wellman CL (2005) Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex. Cereb Cortex 15:1714–1722PubMedCrossRefGoogle Scholar
  9. Chagnac-Amitai Y, Luhmann HJ, Prince DA (1990) Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features. J Comp Neurol 296:598–613PubMedCrossRefGoogle Scholar
  10. Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104PubMedCrossRefGoogle Scholar
  11. Contreras D (2004) Electrophysiological classes of neocortical neurons. Neural Netw 17:633–646PubMedCrossRefGoogle Scholar
  12. Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60:236–248PubMedCrossRefGoogle Scholar
  13. Dégenètais E, Thierry AM, Glowinski J, Gioanni Y (2002) Electrophysiological properties of pyramidal neurons in the rat prefrontal cortex: an in vivo intracellular recording study. Cereb Cortex 12:1–16PubMedCrossRefGoogle Scholar
  14. Eggermont JJ, Smith GM (1996) Burst-firing sharpens frequency-tuning in primary auditory cortex. Neuroreport 7:753–757PubMedCrossRefGoogle Scholar
  15. Franceschetti S, Sancini G, Panzica F, Radici C, Avanzini G (1998) Postnatal differentiation of firing properties and morphological characteristics in layer V pyramidal neurons of the sensorimotor cortex. Neuroscience 83:1013–1024PubMedCrossRefGoogle Scholar
  16. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209PubMedCrossRefGoogle Scholar
  17. Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10:981–991PubMedCrossRefGoogle Scholar
  18. Koch C (1999) Biophysics of computation. Oxford University Press, New York; OxfordGoogle Scholar
  19. Krahe R, Gabbiani F (2004) Burst firing in sensory systems. Nat Rev Neurosci 5:13–23PubMedCrossRefGoogle Scholar
  20. Krichmar JL, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA (2002) Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Res 941:11–28PubMedCrossRefGoogle Scholar
  21. Larkman AU (1991) Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns. J Comp Neurol 306:307–319PubMedCrossRefGoogle Scholar
  22. Magariños AM, McEwen BS, Flügge G, Fuchs E (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shews. J Neurosci 16:3534–3540PubMedGoogle Scholar
  23. Mainen Z, Sejnowski T (1996) Influence of dendritic structure on firing patterns in model neocortical neurons. Nature 382:363–366PubMedCrossRefGoogle Scholar
  24. Mason A, Larkman A (1990) Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. J Neurosci 10:1415–1428PubMedGoogle Scholar
  25. McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384–1400PubMedGoogle Scholar
  26. Moolman DL, Vitolo OV, Vonsattel J-P G, Shelanski ML (2004) Dendrite and dendritic spine alterations in Alzheimer models. J Neurocytol 33:377–387PubMedCrossRefGoogle Scholar
  27. Okuhara DY, Beck SG (1998) Corticosteroids influence the action potential firing pattern of hippocampal subfield CA3 pyramidal cells. Neuroendocrinology 67:58–66PubMedCrossRefGoogle Scholar
  28. Pavlides C, Nivon LG, McEwen BS (2002) Effects of chronic stress on hippocampal long-term potentiation. Hippocampus 12:245–257PubMedCrossRefGoogle Scholar
  29. Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, McEwen BS, Morrison JH (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125:1–6PubMedCrossRefGoogle Scholar
  30. Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491–527PubMedCrossRefGoogle Scholar
  31. Ruan Y-W, Zou B, Fan Y, Li Y, Lin N, Zeng Y-S, Gao T-M, Yao Z, Xu ZC (2006) Dendritic plasticity of CA1 pyramidal neurons after transient global ischemia. Neuroscience 140:191–201PubMedCrossRefGoogle Scholar
  32. Samsonovich AV, Ascoli GA (2006) Morphological homeostasis in cortical dendrites. Proc Natl Acad Sci USA 103:1569–1574PubMedCrossRefGoogle Scholar
  33. Sheasby BW, Fohlmeister JF (1999) Impulse encoding across the dendritic morphologies of retinal ganglion cells. J Neurophysiol 81:1685–1698PubMedGoogle Scholar
  34. Sousa N, Lukoyanov NV, Madeira MD, Almeida OFX, Paula-Barbosa NM (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97:253–266PubMedCrossRefGoogle Scholar
  35. Stern EA, Bacskai BJ, Hickey GA, Attenello FJ, Lombardo JA, Hyman BT (2004) Cortical synaptic integration in vivo is disrupted by amyloid-beta plaques. J Neurosci 24:4535–4540PubMedCrossRefGoogle Scholar
  36. Swadlow HA, Gusev AG (2001) The impact of ‘bursting’ thalamic impulses at a neocortical synapse. Nat Neurosci 4:402–408PubMedCrossRefGoogle Scholar
  37. Teskey GC, Monfils M-H, Silasi G, Kolb B (2006) Neocortical kindling is associated with opposing alterations in dendritic morphology in neocortical layer V and striatum from neocortical layer III. Synapse 59:1–9PubMedCrossRefGoogle Scholar
  38. Valentine PA, Teskey GC, Eggermont JJ (2004) Kindling changes burst firing, neural synchrony and tonotopic organization of cat primary auditory cortex. Cereb Cortex 14:827–839PubMedCrossRefGoogle Scholar
  39. Van Elburg RAJ, Van Ooyen A (2004) A new measure for bursting. Neurocomputing 58–60:497–502CrossRefGoogle Scholar
  40. Van Elburg RAJ, Van Ooyen A (2010) Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PloS Comput Biol 6(5):e1000781Google Scholar
  41. Van Ooyen A, Duijnhouwer J, Remme MWH, Van Pelt J (2002) The effect of dendritic topology on firing patterns in model neurons. Network 13:311–325PubMedCrossRefGoogle Scholar
  42. Wang X-J (1999) Fast burst firing and short-term synaptic plasticity: a model of neocortical chattering neurons. Neuroscience 89:347–362PubMedCrossRefGoogle Scholar
  43. Williams SR, Stuart GJ (1999) Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons. J Physiol (Lond) 521:467–482CrossRefGoogle Scholar
  44. Woolley C, Gould E, McEwen BS (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225–231PubMedCrossRefGoogle Scholar
  45. Yamada M, Wada Y, Tsukagoshi H, Otomo E, Hayakawa M (1988) A quantitative Golgi study of basal dendrites of hippocampal CA1 pyramidal cells in senile dementia of Alzheimer type. J Neurol Neurosurg Psyhiatry 51:1088–1090CrossRefGoogle Scholar
  46. Yang CR, Seamans JK, Gorelova N (1996) Electrophysiological and morphological properties of layers V-VI principal pyramidal cells in rat prefrontal cortex in vitro. J Neurosci 16:1904–1921PubMedGoogle Scholar
  47. Yun SH, Mook-Jung I, Jung MW (2002) Variation in effective stimulus patterns for induction of long-term potentiation across different layers of rat entorhinal cortex. J Neurosci 22:RC214PubMedGoogle Scholar
  48. Zhang Z-W (2004) Maturation of layer V pyramidal neurons in the rat prefrontal cortex: intrinsic properties and synaptic function. J Neurophysiol 91:1171–1182PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Computational Neuroscience Group, Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
  2. 2.Institute of Artificial Intelligence and Cognitive Engineering (ALICE)University of GroningenGroningenThe Netherlands

Personalised recommendations