Skip to main content

A Trade-Off Between Dendritic Democracy and Independence in Neurons with Intrinsic Subthreshold Membrane Potential Oscillations

  • Chapter
  • First Online:
The Computing Dendrite

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 11))

  • 2133 Accesses

Abstract

Membrane potential oscillations are ubiquitous in neurons and have been proposed to underly important neuronal computations. As a paradigmatic example, the periodic spatial tuning of stellate cells from medial entorhinal cortex neurons is thought to be generated by the interference patterns arising from multiple, independent dendritic oscillators, each controlled by direction-selective input. We analyzed how multiple dendritic oscillators embedded in the same neuron integrate inputs separately and determine somatic membrane voltage jointly. We found that the interaction of dendritic oscillations leads to phase locking, which sets an upper limit on the time scale for independent input integration. Factors that increase this time scale also decrease the influence that the oscillations exert on somatic voltage. In stellate cells, inter-dendritic coupling dominates and causes these cells to act as single oscillators. Our results suggest a fundamental trade-off between local and global processing in dendritic trees integrating ongoing signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso AA, Klink R (1993) Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J Neurophysiol 70(1):128–143

    PubMed  CAS  Google Scholar 

  • Alonso AA, Llinás RR (1989) Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342(6246):175–177

    Article  PubMed  CAS  Google Scholar 

  • Burgess N, Barry C, O’Keefe J (2007) An oscillatory interference model of grid cell firing. Hippocampus 17(9):801–812

    Article  PubMed  Google Scholar 

  • Carnevale NT, Johnston D (1982) Electrophysiological characterization of remote chemical synapses. J Neurophysiol 47(4):606–621

    PubMed  CAS  Google Scholar 

  • Chapman CA, Lacaille JC (1999) Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. J Neurophysiol 81(3): 1296–1307

    PubMed  CAS  Google Scholar 

  • Dickson CT, Magistretti J, Shalinsky MH, Fransén E, Hasselmo ME, Alonso AA (2000) Properties and role of I h in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J Neurophysiol 83(5):2562–2579

    PubMed  CAS  Google Scholar 

  • Domnisoru C, Kinkhabwala AA, Tank DW (2013) Membrane potential dynamics of grid cells. Nature 495(7440):199–204

    Article  PubMed  CAS  Google Scholar 

  • Fransén E, Alonso AA, Dickson CT, Magistretti J, Hasselmo ME (2004) Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons. Hippocampus 14(3):368–384

    Article  PubMed  Google Scholar 

  • Gasparini S, Migliore M, Magee JC (2004) On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci 24(49):11046–11056

    Article  PubMed  CAS  Google Scholar 

  • Giocomo L, Zilli E, Fransén E, Hasselmo M (2007) Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315(5819):1719–1722

    Article  PubMed  CAS  Google Scholar 

  • Giocomo LM, Moser MB, Moser EI (2011) Computational models of grid cells. Neuron 71(4):589–603

    Article  PubMed  CAS  Google Scholar 

  • Golding NL, Spruston N (1998) Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21(5):1189–1200

    Article  PubMed  CAS  Google Scholar 

  • Gutfreund Y, Yarom Y, Segev I (1995) Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. J Physiol 483:621–640

    PubMed  CAS  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052):801–806

    Article  PubMed  CAS  Google Scholar 

  • Hafting T, Fyhn M, Bonnevie T, Moser MB, Moser EI (2008) Hippocampus-independent phase precession in entorhinal grid cells. Nature 453(7199):1248–1252

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME (2007) Arc length coding by interference of theta frequency oscillations may underlie context-dependent hippocampal unit data and episodic memory function. Learn Mem 14(11):782–794

    Article  PubMed  Google Scholar 

  • Häusser M (2001) Synaptic function: dendritic democracy. Curr Biol 11(1):R10–R12

    Article  PubMed  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79(8):2554–2558

    Article  PubMed  CAS  Google Scholar 

  • Huhn Z, Orbán G, Érdi P, Lengyel M (2005) Theta oscillation-coupled dendritic spiking integrates inputs on a long time scale. Hippocampus 15(7):950–962

    Article  PubMed  Google Scholar 

  • Izhikevich E (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT, Cambridge

    Google Scholar 

  • Klink R, Alonso AA (1997) Morphological characteristics of layer II projection neurons in the rat medial entorhinal cortex. Hippocampus 7(5):571–583

    Article  PubMed  CAS  Google Scholar 

  • Koch C (1984) Cable theory in neurons with active, linearized membranes. Biol Cybern 50(1):15–33

    Article  PubMed  CAS  Google Scholar 

  • Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325(5941):756–760

    Article  PubMed  CAS  Google Scholar 

  • Lengyel M, Szatmáry Z, Érdi P (2003) Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing. Hippocampus 13(6):700–714

    Article  PubMed  Google Scholar 

  • Leung LW, Yim CY (1991) Intrinsic membrane potential oscillations in hippocampal neurons in vitro. Brain Res 553(2):261–274

    Article  PubMed  CAS  Google Scholar 

  • Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50(2):291–307

    Article  PubMed  CAS  Google Scholar 

  • Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3(9):895–903

    Article  PubMed  CAS  Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:155–133

    Article  Google Scholar 

  • McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7(8):663–678

    Article  PubMed  CAS  Google Scholar 

  • Nevian T, Larkum ME, Polsky A, Schiller J (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10(2):206–214

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe J, Burgess N (2005) Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 15(7):853–866

    Article  PubMed  Google Scholar 

  • Pape HC, Paré D, Driesang RB (1998) Two types of intrinsic oscillations in neurons of the lateral and basolateral nuclei of the amygdala. J Neurophysiol 79(1):205–216

    PubMed  CAS  Google Scholar 

  • Poirazi P, Brannon T, Mel BW (2003) Pyramidal neuron as two-layer neural network. Neuron 37(6):989–999

    Article  PubMed  CAS  Google Scholar 

  • Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7(6):621–627

    Article  PubMed  CAS  Google Scholar 

  • Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13(7):648–687

    Article  PubMed  CAS  Google Scholar 

  • Remme MWH, Rinzel J (2011) Role of active dendritic conductances in subthreshold input integration. J Comput Neurosci 31(1):13–30

    Article  PubMed  Google Scholar 

  • Remme MWH, Lengyel M, Gutkin BS (2009) The role of ongoing dendritic oscillations in single-neuron dynamics. PLoS Comput Biol 5(9):e1000493

    Article  PubMed  Google Scholar 

  • Remme MWH, Lengyel M, Gutkin BS (2010) Democracy-independence trade-off in oscillating dendrites and its implications for grid cells. Neuron 66(3):429–437

    Article  PubMed  CAS  Google Scholar 

  • Rinzel J, Rall W (1974) Transient response in a dendritic neuron model for current injected at one branch. Biophys J 14(10):759–790

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386–408

    Article  PubMed  CAS  Google Scholar 

  • Rotstein HG, Oppermann T, White JA, Kopell NJ (2006) The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells. J Comput Neurosci 21(3):271–292

    Article  PubMed  Google Scholar 

  • Rudolph M, Destexhe A (2003) A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. J Neurosci 23(6):2466–2476

    PubMed  CAS  Google Scholar 

  • Rumelhart DE, McClelland JL (eds) (1986) Parallel distributed processing: explorations in the microstructure of cognition. MIT, Cambridge

    Google Scholar 

  • Sabah NH, Leibovic KN (1969) Subthreshold oscillatory responses of the Hodgkin–Huxley cable model for the squid giant axon. Biophys J 9(10):1206–1222

    Article  PubMed  CAS  Google Scholar 

  • Sanhueza M, Bacigalupo J (2005) Intrinsic subthreshold oscillations of the membrane potential in pyramidal neurons of the olfactory amygdala. Eur J Neurosci 22(7):1618–1626

    Article  PubMed  Google Scholar 

  • Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312(5774):758–762

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Hieber C, Häusser M (2013) Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nat Neurosci 16(3):325–331

    Article  PubMed  CAS  Google Scholar 

  • Stuart G, Spruston N, Häusser M (2007) Dendrites, 2nd edn. Oxford University Press, New York

    Book  Google Scholar 

  • Wei DS, Mei YA, Bagal A, Kao JP, Thompson SM, Tang CM (2001) Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 293(5538):2272–2275

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

 This work was supported by a Marie Curie Team of Excellence Grant (BIND MEXT-CT-2005-024831; MR, BSG), the Gatsby Charitable Foundation (ML), Alliance France-UK collaborative grant (MR, ML, BSG), the CNRS (BSG), the Wellcome Trust (ML), German Federal Ministry of Education and Research (No. 01GQ0972; MR), and the Einstein Foundation Berlin (MR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel W. H. Remme .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 A.1 Derivation of Phase Locking Time Constant and Stable Phase-Locked Solution

We performed a mathematical analysis to determine the dynamics of two subthreshold dendritic oscillators. We determined how fast phase locking of dendritic oscillators occurs as a function of the oscillator properties and the properties of the membrane segment connecting the oscillators, and what is the phase difference ϕ between the oscillators in the stable phase-locked solution. Consider a system of two identical oscillators with natural frequency f (in Hz) that are coupled via a cable of length l (in cm), with oscillator i = 1,2 located at x = 0 and x = l, respectively (see Figs. 21.2a and 21.4a). The membrane potential V i (t) (in millivolts) of each dendritic oscillator is described by a sinusoidal function:

$$ {V}_{i}(t)={\overline{V}}_{\text{dend}}\mathrm{cos}(\omega(t+{\theta}_{i}))+{V}_{\text{R}},$$
(21.1)

with dendritic oscillator amplitude \( {\overline{V}}_{\text{dend}}\) (in millivolts), angular frequency ω = 2π f, phase shift θ i , and resting membrane potential V R. We consider the oscillators are weakly coupled (i.e., the interactions only affect the oscillators’ phases). We can then write the changes in the phase shifts of the oscillators as

$$ {\dot{\theta}}_{i}={\varepsilon}Z(t){p}_{i}(t),$$
(21.2)

where the positive parameter ε ≪ 1, and Z(t) is the infinitesimal PRC which is assumed to be identical for both oscillators. It describes the change of the oscillator’s phase shift in response to an infinitesimally small and short perturbation at a particular phase (Izhikevich, 2007). Here we consider \( Z(t)=-Q\mathrm{sin}(\omega t)\), where Q is the amplitude of the PRC (in seconds per millivolt). Note that when \( Q=1/\omega{\overline{V}}_{\text{dend}}\) we obtain the PRC of Andronov–Hopf oscillators, the minimal dynamical system to produce the sinusoidal limit cycle oscillations in (21.1). The perturbations p i (t) result from the axial currents that flow between the cable and oscillator i. The passive properties of the cable are determined by membrane time constant τ (in seconds), leak reversal potential E L (in millivolts), and length constant λ (in centimeters), giving the cable an electrotonic length \( L=l/\lambda\). The cable also expresses a voltage-dependent conductance with reversal potential E m. The dynamics of this conductance are determined by a single gating variable m(x,t) with activation function m (V ) and time constant τ m(V ). The equations governing the membrane potential V (x,t) and gating variable m(x,t) along the cable are

$$ \begin{array}{ll}{\tau}\frac{\partial }{\partial{t}}V(x,t)={\lambda}^{2}\frac{{\partial }^{2}}{\partial {x}^{2}}V(x,t)-(V(x,t)-{E}_{\text{L}})-{\gamma}_{\text{m}}m(x,t)(V(x,t)-{E}_{\text{m}}),\\ {\tau}_{\text{m}}(V(x,t))\frac{\partial }{\partial t}m(x,t)={m}_{\infty }(V(x,t))-m(x,t),\end{array}$$
(21.3)

where γ m is the ratio of the maximal conductance of the active current to the passive membrane conductance. In order to determine the perturbations to the oscillators we need to solve (21.3) with the oscillators at the ends of the cable giving the periodically forced end conditions of the cable. For this, we first linearize (21.3) about the membrane voltage V R around which the membrane potential oscillates, leading to the quasi-active approximation for the cable (Sabah and Leibovic, 1969; Koch, 1984; Remme and Rinzel, 2011). We define U(x,t) as the difference between the oscillating solution and the resting membrane potential V R, i.e., U(x,t) ≡ V (x,t) − V R and we define w(x,t) analogously as w(x,t) ≡ m(x,t) − m (V R). The equations describing the quasi-active cable read

$$ \begin{array}{l}{\tau}\frac{\partial }{\partial t}U(x,t)={\lambda}^{2}\frac{{\partial }^{2}}{\partial{x}^{2}}U(x,t)-{\gamma}_{\text{R}}U(x,t)-{\gamma}_{\text{m}}({V}_{\text{R}}-{E}_{\text{m}})w(x,t),\\ {\tau}_{\text{m}}\frac{\partial}{\partial t}w(x,t)= \frac{\partial }{\partial V}{m}_{\infty }({V}_{\text{R}})U(x,t)-w(x,t),\end{array}$$
(21.4)

where \( {\gamma}_{\text{R}}=1+{\gamma}_{\text{m}}{m}_{\infty }({V}_{\text{R}})\) and τ m =τ m(V R). Using the oscillators from (21.1) as the periodically forced end conditions for (21.4) we can write the solution as

$$ U(x,t)={\overline{V}}_{\text{dend}}.\text{Re}\left[\frac{\mathrm{sinh}\left(b\left(L-x/\lambda\right)\right)}{\mathrm{sinh}(bL)}{e}^{i\omega(t+{\theta}_{1})}+\frac{\mathrm{sinh}\left(bx/\lambda\right)}{\mathrm{sinh}(bL)}{e}^{i\omega(t+{\theta}_{2})}\right],$$
(21.5)

where Re[z] is the real part of the complex number z and where

$$b=\sqrt{{\gamma}_{\text{R}}+\frac{\mu}{1+{(\omega{\tau}_{\text{m}})}^{2}}+i\omega\left(\tau-\frac{\mu{\tau}_{\text{m}}} {1+{(\omega{\tau}_{\text{m}})}^{2}}\right)},$$
(21.6)

with

$$ \mu={\gamma}_{\text{m}}({V}_{\text{R}}-{E}_{\text{m}})\frac{\partial}{\partial V}{m}_{\infty }({V}_{\text{R}}).$$
(21.7)

Note that the sign of μ determines whether the active current is restorative (μ > 0) or regenerative (μ < 0; the current is passive when μ = 0). We can now show that the perturbation to oscillator i = 1 reads

$$ {p}_{1}(t)=\frac{\partial }{\partial x}U(0,t)=\frac{{\overline{V}}_{\text{dend}}}{\lambda}\times \text{Re}\left[\frac{b}{\mathrm{sinh}(bL)}{e}^{i\omega(t+{\theta}_{2})}-\mathrm{coth}(bL){e}^{i\omega(t+{\theta}_{1})}\right].$$
(21.8)

We want to describe the evolution of the phase difference \( \phi(t)={\theta}_{2}(t)-{\theta}_{1}(t)\). For this we first need to determine the phase interaction function H i (ϕ) that describes the average effect of perturbation p i (t) on the phase of oscillator i over a cycle of period \( T=2\pi/\omega\). For oscillator i = 1 this interaction function reads

$$ {H}_{1}(\phi)=\frac{1}{T}{\displaystyle \underset{0}{\overset{T}{\int }}Z}(t){p}_{1}(t+\phi)dt=\frac{Q{\overline{V}}_{\text{dend}}}{2\lambda}\rho\mathrm{sin}(\omega \phi+\xi)+\vartheta,$$
(21.9)

where

$$\rho=\left|\frac{b}{\mathrm{sin h}(bL)}\right|,$$
(21.10)
$$ \xi=\mathrm{arg}\left[\frac{b}{\mathrm{sinh}(bL)}\right],$$
(21.11)

and ν is a constant, and where |z| and arg[z] are the absolute value and the angle of the complex number z, respectively. Since we consider two identical oscillators the interaction function \( {H}_{2}(\phi)={H}_{1}(-\phi)\). We now obtain an equation describing the evolution of the phase difference between the two oscillators:

$$\dot{\phi}=\dot{\theta}_{2}-\dot{\theta}_{1} =\varepsilon({H}_{1}(-\phi)-{H}_{1}(\phi))=-\varepsilon\frac{Q{\overline{V}}_{\text{dend}}} {\lambda}\rho\mathrm{cos}(\xi)\mathrm{sin}(\omega \phi)$$
(21.12)

The fixed points of this differential equation (i.e., the points where \( \dot{\phi}=0\)) are \( \phi=k \cdot T/2 \), where k is an integer. The stable fixed points are those points where \( d\dot{\phi}/d\phi<0\). The synchronous solution ϕ = 0 is thus stable when cos(ξ) > 0. When this solution is stable the anti-phase solution \( \phi=T/2\) is unstable and vice versa.

Close to the stable fixed point of (21.12), the term sin(ω ϕ) is approximately linear and the phase locking time constant can be written as

$${\tau}_{\text{lock}}=\frac{\lambda}{\varepsilon\omega Q{\overline{V}}_{\text{dend}}}\frac{1}{\rho\left|\mathrm{cos}\xi\right|}.$$
(21.13)

The parameter ε can be described in terms of cable and oscillator parameters:

$$ \varepsilon=\frac{\pi{d}^{2}}{4{R}_{\text{i}}{C}_{\text{m}}a}=\frac{\pi d{\lambda}^{2}}{a\tau}$$
(21.14)

where R i is the intracellular resistivity (in Ω cm), a is the surface area of one oscillator (in cm2), and C m is the specific membrane capacitance (in μF/cm2). The second equality uses \( \lambda=\sqrt{d/4{R}_{\text{i}}{g}_{\text{L}}}\) and \( \tau={C}_{\text{m}}/{g}_{\text{L}}\), where g L is the specific membrane conductance (in S/cm2). Hence we can write the phase locking time constant as

$$ {\tau}_{\text{lock}}=\frac{a\tau}{\pi d\lambda \omega Q{\overline{V}}_{\text{dend}}}\frac{1}{\rho\left|\mathrm{cos}\xi\right|}.$$
(21.15)

1.2 A.2 Amplitude of the Voltage Oscillations Along the Cable

Using (21.5) we can easily obtain explicit expressions for the amplitude of the voltage oscillations along the cable as a function of the cable parameters. For synchronized dendritic oscillators (i.e., ϕ = 0) the oscillation amplitude \( \overline{V}(x)\) at any point x along the cable of length l is

$$\overline{V}(x)={\overline{V}}_{\text{dend}}\left|\frac{\mathrm{sinh}(b(L-x/\lambda))+\mathrm{sinh}(bx/\lambda)}{\mathrm{sinh}(bL)}\right|.$$
(21.16)

Considering the voltage at the middle of the cable as the “somatic” voltage \( {V}_{\text{soma}}(t)=U(l/2,t)\), we find the somatic oscillation amplitudes for synchronized oscillators:

$$ {\overline{V}}_{\text{soma}}=\overline{V}\left(\frac{l}{2}\right)=\frac{{\overline{V}}_{\text{dend}}}{\left|\mathrm{cosh}(bL/2)\right|}.$$
(21.17)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Remme, M.W.H., Lengyel, M., Gutkin, B.S. (2014). A Trade-Off Between Dendritic Democracy and Independence in Neurons with Intrinsic Subthreshold Membrane Potential Oscillations. In: Cuntz, H., Remme, M., Torben-Nielsen, B. (eds) The Computing Dendrite. Springer Series in Computational Neuroscience, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8094-5_21

Download citation

Publish with us

Policies and ethics