Skip to main content

Role of Non-uniform Dendrite Properties on Input Processing by GABAergic Interneurons

  • Chapter
  • First Online:
Book cover The Computing Dendrite

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 11))

  • 2132 Accesses

Abstract

GABAergic interneurons in cortical circuits control the activation of principal cells and orchestrate network activity patterns, including oscillations at different frequency ranges. Recruitment of interneurons depends on integration of convergent synaptic inputs along the dendro-somatic axis; however, dendritic processing in these cells is still poorly understood.

In this chapter, we summarise our results on the cable properties, electrotonic structure and dendritic processing in “basket cells” (BCs; Nörenberg et al. 2010), one of the most prevalent types of cortical interneurons mediating perisomatic inhibition. In order to investigate integrative properties, we have performed two-electrode whole-cell patch clamp recordings, visualised and reconstructed the recorded interneurons and created passive single-cell models with biophysical properties derived from the experiments. Our results indicate that membrane properties, in particular membrane resistivity, are inhomogeneous along the somato-dendritic axis of the cell. Derived values and the gradient of membrane resistivity are different from those obtained for excitatory principal cells. The divergent passive membrane properties of BCs facilitate rapid signalling from proximal basal dendritic inputs but at the same time increase synapse-to-soma transfer for slow signals from the distal apical dendrites.

Our results demonstrate that BCs possess distinct integrative properties. Future computational models investigating the diverse functions of neuronal circuits need to consider this diversity and incorporate realistic dendritic properties not only of excitatory principal cells but also various types of inhibitory interneurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All model BCs can be downloaded from ModelDB (#140789; http://senselab.med.yale.edu/modeldb/).

References

  • Amaral DG (1993) Emerging principles of intrinsic hippocampal organization. Curr Opin Neurobiol 3(2):225–229

    Article  PubMed  CAS  Google Scholar 

  • Andersen P, Bliss TV, Skrede KK (1971) Lamellar organization of hippocampal pathways. Exp Brain Res 13(2):222–238

    PubMed  CAS  Google Scholar 

  • Ascoli GA et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9(7):557–568

    Article  PubMed  CAS  Google Scholar 

  • Bartos M, Vida I, Frotscher M et al (2001) Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J Neurosci 21(8):2687–2698

    PubMed  CAS  Google Scholar 

  • Bartos M, Vida I, Frotscher M et al (2002) Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc Natl Acad Sci USA 99(20):13222–13227

    Article  PubMed  CAS  Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8(1):45–56

    Article  PubMed  CAS  Google Scholar 

  • Bartos M, Alle H, Vida I (2011) Role of microcircuit structure and input integration in hippocampal interneuron recruitment and plasticity. Neuropharmacology 60(5):730–739

    Article  PubMed  CAS  Google Scholar 

  • Brent RP (2002) Algorithms for minimization without derivatives. Dover Publications, Mineola, NY

    Google Scholar 

  • Bucurenciu I, Kulik A, Schwaller B et al (2008) Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse. Neuron 57(4):536–545

    Article  PubMed  CAS  Google Scholar 

  • Buzsáki G (2006) Rhythms of the brain. Oxford University Press, New York, NY

    Book  Google Scholar 

  • Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929

    Article  PubMed  Google Scholar 

  • Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Chitwood RA, Hubbard A, Jaffe DB (1999) Passive electrotonic properties of rat hippocampal CA3 interneurones. J Physiol 515(Pt 3):743–756

    Article  PubMed  CAS  Google Scholar 

  • Ewell LA, Jones MV (2010) Frequency-tuned distribution of inhibition in the dentate gyrus. J Neurosci 30(38):12597–12607

    Article  PubMed  CAS  Google Scholar 

  • Fisahn A, Yamada M, Duttaroy A et al (2002) Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 33(4):615–624

    Article  PubMed  CAS  Google Scholar 

  • Förster E, Zhao S, Frotscher M (2006) Laminating the hippocampus. Nat Rev Neurosci 7(4):259–267

    Article  PubMed  Google Scholar 

  • Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6(4):347–470

    Article  PubMed  CAS  Google Scholar 

  • Geiger JR, Lübke J, Roth A et al (1997) Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18(6):1009–1023

    Article  PubMed  CAS  Google Scholar 

  • Gentet LJ, Stuart GJ, Clements JD (2000) Direct measurement of specific membrane capacitance in neurons. Biophys J 79(1):314–320

    Article  PubMed  CAS  Google Scholar 

  • Golding NL, Mickus TJ, Katz Y et al (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568(Pt 1):69–82

    Article  PubMed  CAS  Google Scholar 

  • Gulledge AT, Kampa BM, Stuart GJ (2005) Synaptic integration in dendritic trees. J Neurobiol 64(1):75–90

    Article  PubMed  CAS  Google Scholar 

  • Gulyás AI, Buzsáki G, Freund TF et al (2006) Populations of hippocampal inhibitory neurons express different levels of cytochrome c. Eur J Neurosci 23(10):2581–2594

    Article  PubMed  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9(6):1179–1209

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Martina M, Jonas P (2010) Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science 327(5961):52–58

    Article  PubMed  CAS  Google Scholar 

  • Jonas P, Bischofberger J, Fricker D et al (2004) Interneuron diversity series: fast in, fast out–temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci 27(1):30–40

    Article  PubMed  CAS  Google Scholar 

  • Koch C (1999) Biophysics of computation. Oxford Univ Press, Oxford

    Google Scholar 

  • Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71(3):512–528

    Article  PubMed  CAS  Google Scholar 

  • Larkum ME, Nevian T, Sandler M et al (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325(5941):756–760

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6(4):312–324

    Article  PubMed  CAS  Google Scholar 

  • London M, Meunier C, Segev I (1999) Signal transfer in passive dendrites with nonuniform membrane conductance. J Neurosci 19(19):8219–8233

    PubMed  CAS  Google Scholar 

  • Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50(2):291–307

    Article  PubMed  CAS  Google Scholar 

  • Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1(3):181–190

    Article  PubMed  CAS  Google Scholar 

  • Major G, Larkman AU, Jonas P et al (1994) Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J Neurosci 14(8):4613–4638

    PubMed  CAS  Google Scholar 

  • Nörenberg A, Hu H, Vida I et al (2010) Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. Proc Natl Acad Sci USA 107(2):894–899

    Article  PubMed  Google Scholar 

  • Patton PE, McNaughton B (1995) Connection matrix of the hippocampal formation: I. The dentate gyrus. Hippocampus 5(4):245–286

    Article  PubMed  CAS  Google Scholar 

  • Pike FG, Goddard RS, Suckling JM et al (2000) Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J Physiol 529(Pt 1):205–213

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491–527

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1962) Electrophysiology of a dendritic neuron model. Biophys J 2(2 Pt 2):145–167

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Treves A (1998) The hippocampus and memory. In: Rolls ET, Treves A (eds) Neural networks and brain function. Oxford University Press, New York, NY, pp 118–120

    Google Scholar 

  • Sambandan S, Sauer JF, Vida I et al (2010) Associative plasticity at excitatory synapses facilitates recruitment of fast-spiking interneurons in the dentate gyrus. J Neurosci 30(35):11826–11837

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Hieber C, Jonas P, Bischofberger J (2007) Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells. J Neurosci 27(31):8430–8441

    Article  PubMed  CAS  Google Scholar 

  • Scott LL, Mathews PJ, Golding NL (2005) Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive. J Neurosci 25(35):7887–7895

    Article  PubMed  CAS  Google Scholar 

  • Spruston N, Stuart G, Häusser M (2008) Dendritic integration. In: Stuart G, Spruston N, Häusser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 231–270

    Google Scholar 

  • Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18(10):3501–3510

    PubMed  CAS  Google Scholar 

  • Thurbon D, Lüscher HR, Hofstetter T et al (1998) Passive electrical properties of ventral horn neurons in rat spinal cord slices. J Neurophysiol 79(5):2485–2502

    PubMed  CAS  Google Scholar 

  • Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85(2):926–937

    PubMed  CAS  Google Scholar 

  • Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49(1):107–117

    Article  PubMed  CAS  Google Scholar 

  • Whittington MA, Traub RD, Jefferys JG (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373(6515):612–615

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Matthiä Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matthiä, A., Bartos, M., Vida, I. (2014). Role of Non-uniform Dendrite Properties on Input Processing by GABAergic Interneurons. In: Cuntz, H., Remme, M., Torben-Nielsen, B. (eds) The Computing Dendrite. Springer Series in Computational Neuroscience, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8094-5_19

Download citation

Publish with us

Policies and ethics