GLIALCAM, A Glial Cell Adhesion Molecule Implicated in Neurological Disease

Part of the Advances in Neurobiology book series (NEUROBIOL, volume 8)


GlialCAM (also named HepaCAM) is a cell adhesion molecule expressed mainly in glial cells from the central nervous system and the liver. GlialCAM plays different roles according to its cellular context. In epithelial cell lines, overexpression of GlialCAM increases cell adhesion and motility but also inhibits cell growth in tumor cell lines, leading to senescence. In glial cells, however, its function is quite different. GlialCAM acts a regulator of subcellular traffic of MLC1, a protein with unknown function involved in the pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare neurological condition. Moreover, GlialCAM itself has been found to be responsible for some of the cases of this disease. Additionally, GlialCAM also works as an auxiliary subunit of the chloride channel ClC-2, regulating its targeting to cell–cell junctions and modifying its functional properties. In summary, GlialCAM has different functions not only related to its adhesive nature, and defects in these functions lead to neurological disease.


Myelin Sheath Cell Junction Bergmann Glia Auxiliary Subunit Megalencephalic Leukoencephalopathy With Subcortical Cyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank all members of the lab and to our collaborators for their support. Studies in our lab are supported by SAF 2009-07014, PS09/02672-ERARE, ELA Foundation 2009-017C4 project, 2009 SGR 719, and an ICREA Academia prize.

Compliance with Ethics Requirements

The authors declare that they have no conflicts of interest.


  1. Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34:76–87CrossRefPubMedGoogle Scholar
  2. Ambrosini E, Serafini B, Lanciotti A, Tosini F, Scialpi F, Psaila R, Raggi C, Di Girolamo F, Petrucci TC, Aloisi F (2008) Biochemical characterization of MLC1 protein in astrocytes and its association with the dystrophin-glycoprotein complex. Mol Cell Neurosci 37:480–493CrossRefPubMedGoogle Scholar
  3. Arcangeli A, Becchetti A (2006) Complex functional interaction between integrin receptors and ion channels. Trends Cell Biol 16:631–639CrossRefPubMedGoogle Scholar
  4. Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738CrossRefPubMedGoogle Scholar
  5. Blanz J, Schweizer M, Auberson M, Maier H, Muenscher A, Hubner CA, Jentsch TJ (2007) Leukoencephalopathy upon disruption of the chloride channel ClC-2. J Neurosci 27:6581–6589CrossRefPubMedGoogle Scholar
  6. Boor I, Nagtegaal M, Kamphorst W, van der Valk P, Pronk JC, van Horssen J, Dinopoulos A, Bove KE, Pascual-Castroviejo I, Muntoni F et al (2007) MLC1 is associated with the dystrophin-glycoprotein complex at astrocytic endfeet. Acta Neuropathol 114:403–410PubMedCentralCrossRefPubMedGoogle Scholar
  7. Brackenbury WJ, Isom LL (2010) Na channel beta subunits: overachievers of the Ion channel family. Front Pharmacol 2:53Google Scholar
  8. Capdevila-Nortes X, Lopez-Hernandez T, Apaja PM, Lopez de Heredia M, Sirisi S, Callejo G, Arnedo T, Nunes V, Lukacs GL, Gasull X et al (2013). Insights into MLC pathogenesis: GlialCAM is an MLC1 chaperone required for proper activation of volume-regulated anion currents. Hum Mol Genet 22(21):4405–4416. doi: 10.1093/hmg/ddt290 Google Scholar
  9. Chen Y, Aulia S, Li L, Tang BL (2006) AMIGO and friends: an emerging family of brain-enriched, neuronal growth modulating, type I transmembrane proteins with leucine-rich repeats (LRR) and cell adhesion molecule motifs. Brain Res Rev 51:265–274CrossRefPubMedGoogle Scholar
  10. Chung Moh M, Hoon Lee L, Shen S (2005) Cloning and characterization of hepaCAM, a novel Ig-like cell adhesion molecule suppressed in human hepatocellular carcinoma. J Hepatol 42:833–841CrossRefPubMedGoogle Scholar
  11. Depienne C, Bugiani M, Dupuits C, Galanaud D, Touitou V, Postma N, van Berkel C, Polder E, Tollard E, Darios F et al (2013) Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study. Lancet Neurol 12:659–668Google Scholar
  12. Duarri A, Teijido O, Lopez-Hernandez T, Scheper GC, Barriere H, Boor I, Aguado F, Zorzano A, Palacin M, Martinez A et al (2008) Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLC1 cause folding defects. Hum Mol Genet 17:3728–3739PubMedCentralCrossRefPubMedGoogle Scholar
  13. Duarri A, Lopez de Heredia M, Capdevila-Nortes X, Ridder MC, Montolio M, Lopez-Hernandez T, Boor I, Lien CF, Hagemann T, Messing A et al (2011) Knockdown of MLC1 in primary astrocytes causes cell vacuolation: a MLC disease cell model. Neurobiol Dis 43:228–238CrossRefPubMedGoogle Scholar
  14. Favre-Kontula L, Rolland A, Bernasconi L, Karmirantzou M, Power C, Antonsson B, Boschert U (2008a) GlialCAM, an immunoglobulin-like cell adhesion molecule is expressed in glial cells of the central nervous system. Glia 56:633–645CrossRefPubMedGoogle Scholar
  15. Favre-Kontula L, Sattonnet-Roche P, Magnenat E, Proudfoot AE, Boschert U, Xenarios I, Vilbois F, Antonsson B (2008b) Detection and identification of plasma proteins that bind GlialCAM using ProteinChip arrays, SELDI-TOF MS, and nano-LC MS/MS. Proteomics 8:378–388CrossRefPubMedGoogle Scholar
  16. Gaudry JP, Arod C, Sauvage C, Busso S, Dupraz P, Pankiewicz R, Antonsson B (2008) Purification of the extracellular domain of the membrane protein GlialCAM expressed in HEK and CHO cells and comparison of the glycosylation. Protein Expr Purif 58:94–102CrossRefPubMedGoogle Scholar
  17. Ilja Boor PK, de Groot K, Mejaski-Bosnjak V, Brenner C, van der Knaap MS, Scheper GC, Pronk JC (2006) Megalencephalic leukoencephalopathy with subcortical cysts: an update and extended mutation analysis of MLC1. Hum Mutat 27:505–512CrossRefPubMedGoogle Scholar
  18. Jeworutzki E, Lopez-Hernandez T, Capdevila-Nortes X, Sirisi S, Bengtsson L, Montolio M, Zifarelli G, Arnedo T, Muller CS, Schulte U et al (2012) GlialCAM, a protein defective in a leukodystrophy, serves as a ClC-2 Cl(-) channel auxiliary subunit. Neuron 73:951–961PubMedCentralCrossRefPubMedGoogle Scholar
  19. Lee LH, Moh MC, Zhang T, Shen S (2009) The immunoglobulin-like cell adhesion molecule hepaCAM induces differentiation of human glioblastoma U373-MG cells. J Cell Biochem 107:1129–1138CrossRefPubMedGoogle Scholar
  20. Leegwater PA, Yuan BQ, van der Steen J, Mulders J, Konst AA, Boor PK, Mejaski-Bosnjak V, van der Maarel SM, Frants RR, Oudejans CB et al (2001) Mutations of MLC1 (KIAA0027), encoding a putative membrane protein, cause megalencephalic leukoencephalopathy with subcortical cysts. Am J Hum Genet 68:831–838PubMedCentralCrossRefPubMedGoogle Scholar
  21. Leegwater PA, Boor PK, Yuan BQ, van der Steen J, Visser A, Konst AA, Oudejans CB, Schutgens RB, Pronk JC, van der Knaap MS (2002) Identification of novel mutations in MLC1 responsible for megalencephalic leukoencephalopathy with subcortical cysts. Hum Genet 110:279–283CrossRefPubMedGoogle Scholar
  22. Lopez-Hernandez T, Ridder MC, Montolio M, Capdevila-Nortes X, Polder E, Sirisi S, Duarri A, Schulte U, Fakler B, Nunes V et al (2011a) Mutant GlialCAM causes megalencephalic leukoencephalopathy with subcortical cysts, benign familial macrocephaly, and macrocephaly with retardation and autism. Am J Hum Genet 88:422–432PubMedCentralCrossRefPubMedGoogle Scholar
  23. Lopez-Hernandez T, Sirisi S, Capdevila-Nortes X, Montolio M, Fernandez-Duenas V, Scheper GC, van der Knaap MS, Casquero P, Ciruela F, Ferrer I et al (2011b) Molecular mechanisms of MLC1 and GLIALCAM mutations in megalencephalic leukoencephalopathy with subcortical cysts. Hum Mol Genet 20:3266–3277CrossRefPubMedGoogle Scholar
  24. Moh MC, Lee LH, Yang X, Shen S (2003) HEPN1, a novel gene that is frequently down-regulated in hepatocellular carcinoma, suppresses cell growth and induces apoptosis in HepG2 cells. J Hepatol 39:580–586CrossRefPubMedGoogle Scholar
  25. Moh MC, Zhang C, Luo C, Lee LH, Shen S (2005) Structural and functional analyses of a novel ig-like cell adhesion molecule, hepaCAM, in the human breast carcinoma MCF7 cells. J Biol Chem 280:27366–27374CrossRefPubMedGoogle Scholar
  26. Moh MC, Zhang T, Lee LH, Shen S (2008) Expression of hepaCAM is downregulated in cancers and induces senescence-like growth arrest via a p53/p21-dependent pathway in human breast cancer cells. Carcinogenesis 29:2298–2305CrossRefPubMedGoogle Scholar
  27. Moh MC, Lee LH, Zhang T, Shen S (2009a) Interaction of the immunoglobulin-like cell adhesion molecule hepaCAM with caveolin-1. Biochem Biophys Res Commun 378:755–760CrossRefPubMedGoogle Scholar
  28. Moh MC, Tian Q, Zhang T, Lee LH, Shen S (2009b) The immunoglobulin-like cell adhesion molecule hepaCAM modulates cell adhesion and motility through direct interaction with the actin cytoskeleton. J Cell Physiol 219:382–391CrossRefPubMedGoogle Scholar
  29. Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26:891–907PubMedCentralCrossRefPubMedGoogle Scholar
  30. Montagna G, Teijido O, Eymard-Pierre E, Muraki K, Cohen B, Loizzo A, Grosso P, Tedeschi G, Palacin M, Boespflug-Tanguy O et al (2006) Vacuolating megalencephalic leukoencephalopathy with subcortical cysts: functional studies of novel variants in MLC1. Hum Mutat 27:292CrossRefPubMedGoogle Scholar
  31. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T et al (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27PubMedCentralCrossRefPubMedGoogle Scholar
  32. Peltola MA, Kuja-Panula J, Lauri SE, Taira T, Rauvala H (2011) AMIGO is an auxiliary subunit of the Kv2.1 potassium channel. EMBO Rep 12:1293–1299PubMedCentralCrossRefPubMedGoogle Scholar
  33. Piaton G, Gould RM, Lubetzki C (2010) Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. J Neurochem 114:1243–1260PubMedGoogle Scholar
  34. Rash JE (2010) Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system. Neuroscience 168:982–1008PubMedCentralCrossRefPubMedGoogle Scholar
  35. Ridder MC, Boor I, Lodder JC, Postma NL, Capdevila-Nortes X, Duarri A, Brussaard AB, Estevez R, Scheper GC, Mansvelder HD et al (2011) Megalencephalic leucoencephalopathy with cysts: defect in chloride currents and cell volume regulation. Brain 134:3342–3354CrossRefPubMedGoogle Scholar
  36. Scheper GC, van Berkel CG, Leisle L, de Groot KE, Errami A, Jentsch TJ, Van der Knaap MS (2010) Analysis of CLCN2 as candidate gene for megalencephalic leukoencephalopathy with subcortical cysts. Genet Test Mol Biomarkers 14:255–257CrossRefPubMedGoogle Scholar
  37. Spiegel I, Adamsky K, Eisenbach M, Eshed Y, Spiegel A, Mirsky R, Scherer SS, Peles E (2006) Identification of novel cell-adhesion molecules in peripheral nerves using a signal-sequence trap. Neuron Glia Biol 2:27–38PubMedCentralCrossRefPubMedGoogle Scholar
  38. Teijido O, Martinez A, Pusch M, Zorzano A, Soriano E, Del Rio JA, Palacin M, Estevez R (2004) Localization and functional analyses of the MLC1 protein involved in megalencephalic leukoencephalopathy with subcortical cysts. Hum Mol Genet 13:2581–2594CrossRefPubMedGoogle Scholar
  39. Teijido O, Casaroli-Marano R, Kharkovets T, Aguado F, Zorzano A, Palacin M, Soriano E, Martinez A, Estevez R (2007) Expression patterns of MLC1 protein in the central and peripheral nervous systems. Neurobiol Dis 26:532–545CrossRefPubMedGoogle Scholar
  40. Thiemann A, Grunder S, Pusch M, Jentsch TJ (1992) A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356:57–60CrossRefPubMedGoogle Scholar
  41. van der Knaap MS, Barth PG, Stroink H, van Nieuwenhuizen O, Arts WF, Hoogenraad F, Valk J (1995a) Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol 37:324–334CrossRefPubMedGoogle Scholar
  42. van der Knaap MS, Valk J, Barth PG, Smit LM, van Engelen BG, Tortori Donati P (1995b) Leukoencephalopathy with swelling in children and adolescents: MRI patterns and differential diagnosis. Neuroradiology 37:679–686CrossRefPubMedGoogle Scholar
  43. van der Knaap MS, Barth PG, Vrensen GF, Valk J (1996) Histopathology of an infantile-onset spongiform leukoencephalopathy with a discrepantly mild clinical course. Acta Neuropathol 92:206–212CrossRefPubMedGoogle Scholar
  44. van der Knaap MS, Lai V, Kohler W, Salih MA, Fonseca MJ, Benke TA, Wilson C, Jayakar P, Aine MR, Dom L et al (2010) Megalencephalic leukoencephalopathy with cysts without MLC1 defect. Ann Neurol 67:834–837PubMedGoogle Scholar
  45. van der Knaap MS, Boor I, Estevez R (2012) Megalencephalic leukoencephalopathy with subcortical cysts: chronic white matter edema due to a defect in brain ion and water homeostasis. Lancet Neurol 11(11):973–985CrossRefPubMedGoogle Scholar
  46. Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20:588–594CrossRefPubMedGoogle Scholar
  47. Zhang T, Moh MC, Lee LH, Shen S (2010) The immunoglobulin-like cell adhesion molecule hepaCAM is cleaved in the human breast carcinoma MCF7 cells. Int J Oncol 37:155–165CrossRefPubMedGoogle Scholar
  48. Zhang QL, Luo CL, Wu XH, Wang CY, Xu X, Zhang YY, Liu Q, Shen SL (2011) HepaCAM induces G1 phase arrest and promotes c-Myc degradation in human renal cell carcinoma. J Cell Biochem 112:2910–2919CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Physiology Section, Department of Physiological Sciences II, School of MedicineUniversity of BarcelonaBarcelonaSpain

Personalised recommendations