The Phylogeny of the Caricaceae

  • Fernanda Antunes Carvalho
  • Susanne S. RennerEmail author
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 10)


The family Caricaceae comprises 35 species in currently 6 genera. Thirty-two species occur in Central and South America and two in Africa. The species occur in a wide range of tropical habitats, and growth forms range from rhizomatous herbs to tall trees. Most species are dioecious, with strictly male and female individuals. During the last decades, the highland papayas (Vasconcellea spp.) were considered the closest relatives of papaya. However, a molecular phylogeny based on nuclear and plastid sequences from all species shows that Carica papaya is sister to a Mexican clade of four herbaceous species in the genera Jarilla and Horovitzia. This unexpected discovery has important implications for the improvement of papaya by plant breeders, and as a first step, we here summarize the currently sparse knowledge concerning the morphology and ecology of the Mexican Caricaceae. We also discuss the molecular phylogeny of family and its biogeographic implications, such as transatlantic dispersal, diversification concomitant with the Miocene uplift of the Andes, expansion along the Isthmus of Panama, and adaptation of species in the genus Jacaratia to the drier climates and more open vegetation that predominated during the Late Miocene, 12–7 Ma ago.


Internal Transcribe Spacer Late Miocene Molecular Clock African Species Smithsonian Tropical Research Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Antoine PO, Marivaux L, Croft DA, Billet G, Ganerod M, Jaramillo C, Martin T, Orliac MJ, Tejada J, Altamirano AJ, Duranthon F, Fanjat G, Rousse S, Gismondi RS (2011) Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proc R Soc B Biol Sci 12. doi: 10.1098/rspb.2011.1732
  2. Aradhya MK, Manshardt RM, Zee F, Morden CW (1999) A phylogenetic analysis of the genus Carica L. (Caricaceae) based on restriction fragment length variation in a cpDNA intergenic spacer region. Genet Resour Crop Evol 46:579–586CrossRefGoogle Scholar
  3. Badillo VM (1971) Monografia de la familia Caricaceae, Asociación de profesores. Universidad Central de Venezuela, Maracay, 220 ppGoogle Scholar
  4. Badillo VM (1993) Caricaceae. Segundo esquema. Rev Fac Agron Univ Central Venezuela 43:1–111Google Scholar
  5. Badillo VM (2000) Vasconcella St.-Hil. (Caricaceae) con la rehabilitacion de este ultimo. Ernstia 10:74–79Google Scholar
  6. Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci USA 107:18724–18728PubMedCrossRefGoogle Scholar
  7. Carranza S, Carranza S, Arnold EN, Mateo JA, López-Jurado LF (2000) Long-distance colonization and radiation in gekkonid lizards, Tarentola (Reptilia: Gekkonidae), revealed by mitochondrial DNA sequences. Proc R Soc B Biol Sci 267:637–649CrossRefGoogle Scholar
  8. Carvalho F, Renner SS (2012) A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. Mol Phylogenet Evol 65:46–53PubMedCrossRefGoogle Scholar
  9. Cheek M (2004) Cylicomorpha solmsii. In: IUCN 2011. IUCN Red List of threatened species. Version 2011.1. Downloaded on 3 Nov 2011
  10. Coppens d’Eeckenbrugge G, Drew R, Kyndt T, Scheldeman X (2013) Vasconcellea for papaya improvement. In Ming R, Moore P (eds) Genetics and genomics of papaya. Springer Science+Business Media, New YorkGoogle Scholar
  11. Coppens d’Eeckenbrugge G, Restrepo MT, Jiménez D (2007) Morphological and isozyme characterization of common papaya in Costa Rica. Acta Hortic 740:109–120Google Scholar
  12. De Candolle A (1864) Papayaceae. Prodromus Syst Nat Regni Veg 15:413–420Google Scholar
  13. De Candolle A (1883) Origine des plantes cultivées. G Baillière et cie, ParisGoogle Scholar
  14. Diaz-Luna CL, Lomelí Sención JA (1992) Revisión del género Jarilla Rusby (Caricaceae). Acta Bot Mexicana 20:77–99Google Scholar
  15. Diaz-Luna CL, Lomelí Sención JA (1997) Flora de Mexico: Fanerogamas 7(1), Familia Caricaceae. Consejo Nacional de La Flora de Mexico, Mexico, 21 ppGoogle Scholar
  16. Farris DW, Jaramillo C, Bayona G, Restrepo-Moreno SA, Montes C, Cardona A, Mora A, Speakman RJ, Glascock MD, Valencia V (2011) Fracturing of the Panamanian isthmus during initial collision with South America. Geology 11:1007–1010CrossRefGoogle Scholar
  17. Fratantoni DM, Johns WE, Townsend TL, Hurlburt HE (2000) Low-latitude circulation and mass transport pathways in a model of the tropical Atlantic Ocean. J Phys Oceanogr 30:1944–1966CrossRefGoogle Scholar
  18. Hoorn C, Wesselingh FP, Ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez–Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931PubMedCrossRefGoogle Scholar
  19. Houle A (1999) The origin of platyrrhines: an evaluation of the Antarctic scenario and the floating island model. Am J Phys Anthropol 109:541–559PubMedCrossRefGoogle Scholar
  20. Jobin-Decor MP, Graham GC, Henry RJ, Drew RA (1997) RAPD and isozyme analysis of genetic relationships between Carica papaya and wild relatives. Genet Resour Crop Evol 44:471–477CrossRefGoogle Scholar
  21. Kyndt T, Van Droogenbroeck B, Romeijn-Peeters E, Romero-Motochi JP, Scheldeman X, Goetghebeur P, Van Damme P, Gheysen G (2005a) Molecular phylogeny and evolution of Caricaceae based on rDNA internal transcribed spacers and chloroplast sequence data. Mol Phylogenet Evol 37:442–459PubMedCrossRefGoogle Scholar
  22. Kyndt T, Romeijn-Peeters E, Van Droogenbroeck B, Romero-motochi JP, Gheysen G, Goetghebeur P (2005b) Species relationships in the genus Vasconcellea (Caricaceae) based on molecular and morphological evidence. Am J Bot 92:1033–1044PubMedCrossRefGoogle Scholar
  23. Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352PubMedCrossRefGoogle Scholar
  24. Lorence DH, Colin RT (1988) Carica cnidoscoloides (sp. nov) and sect. Holostigma (sect. nov.) of Caricaceae from Southern Mexico. Syst Bot 13:107–110CrossRefGoogle Scholar
  25. Manshardt RM, Zee FTP (1994) Papaya germplasm and breeding in Hawaii. Fruit Varieties J 48:146–152Google Scholar
  26. Ming R et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996PubMedCrossRefGoogle Scholar
  27. Olson ME, Rosell JA (2006) Using heterochrony to detect modularity in the evolution of stem diversity in the plant family Moringaceae. Evolution 60:724–734PubMedGoogle Scholar
  28. Pound MJ, Haywood AM, Salzmann U, Riding JB, Lunt DJ, Hunter SJ (2011) A Tortonian (Late Miocene, 11.61–7.25 Ma) global vegetation reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 300:29–45CrossRefGoogle Scholar
  29. Prance GT (1984) The pejibaye, Guilielma gasipaes (H.B.K.) Bailey, and the papaya, Carica papaya L. In Stone D (ed) Pre-Columbian plant migration. Papers of the Peabody Museum of Archaeology and Ethnology, vol 76. Harvard University Press, Boston, pp 85–104Google Scholar
  30. Renner S (2004) Plant dispersal across the tropical Atlantic by wind and sea currents. Int J Plant Sci 165:S23–S33CrossRefGoogle Scholar
  31. Sawant AC (1958) Crossing relationships in the genus Carica. Evolution 12:263–266CrossRefGoogle Scholar
  32. Scheldeman X, Willemen L, Coppens d’Eeckenbrugge G, Romeijn-Peeters E, Restrepo MT, Romero Motoche J, Jiménez D, Lobo M, Medina CI, Reyes C, Rodríguez D, Ocampo JA, Damme P, Goetgebeur P (2007) Distribution, diversity and environmental adaptation of highland papayas (Vasconcellea spp.) in tropical and subtropical America. Biodivers Conserv 116:1867–1884CrossRefGoogle Scholar
  33. Sepulchre P, Ramstein G, Fluteau F, Schuster M, Tiercelin JJ, Brunet M (2006) Tectonic uplift and Eastern Africa aridification. Science 313:1419–1423PubMedCrossRefGoogle Scholar
  34. Solms-Laubach (1889) Die Heimat und der Ursprung des kultivierten Melonenbaumes, Carica papaya L. Botanische Zeitung 44:709–720Google Scholar
  35. Stevens PF (2001 onwards) Angiosperm phylogeny website. Version 9, June 2008 continuously updated since.
  36. Tokuhisa D, Cunha D, Dos F, Dias S, Alvarenga EM, Hilst PC, Demuner AJ (2007) Compostos fenólicos inibidores da germinação de sementes de mamão (Carica papaya L.). Rev Brasil Sementes 29:161–168Google Scholar
  37. Tookey HL, Gentry HS (1969) Proteinase of Jarilla chocola, a relative of papaya. Phytochemistry 8:989–991CrossRefGoogle Scholar
  38. Trauth MH, Larrasoaña JC, Mudelsee M (2009) Trends, rhythms and events in Plio-Pleistocene African climate. Quat Sci Rev 28:399–411CrossRefGoogle Scholar
  39. Van Droogenbroeck BV, Breyne P, Goetghebeur P, Romeijn-Peeters E, Kyndt T, Gheysen G (2002) AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador. Theor Appl Genet 105:289–297PubMedCrossRefGoogle Scholar
  40. Van Droogenbroeck BV, Kyndt T, Maertens I, Romeijn-Peeters E, Scheldeman X, Romero-Motochi JP, Van Damme P, Goetghebeur P, Gheysen G (2004) Phylogenetic analysis of the highland papayas (Vasconcellea) and allied genera (Caricaceae) using PCR-RFLP. Theor Appl Genet 108:1473–1486PubMedCrossRefGoogle Scholar
  41. Van Droogenbroeck BV, Kyndt T, Romeijn-Peeters E, Van Thuyne W, Goetghebeur P, Romero-Motochi JP, Gheysen G (2006) Evidence of natural hybridization and introgression between Vasconcellea species (Caricaceae) from southern Ecuador revealed by chloroplast, mitochondrial and nuclear DNA markers. Ann Bot 97:793–805PubMedCrossRefGoogle Scholar
  42. VanBuren R, Ming R (2013) Sequencing and assembly of the transgenic papaya genome. In: Ming R, Moore P (eds) Genetics and genomics of papaya. Springer Science + Business Media, New YorkGoogle Scholar
  43. Vavilov NI (1992) Origin and geography of cultivated plants. Translated by D Löve. Cambridge University Press, Cambridge (English translation, original published 1940 in Russian)Google Scholar
  44. Vidal N, Azvolinsky A, Cruaud C, Hedges SB (2008) Origin of tropical American burrowing reptiles by transatlantic rafting. Biol Lett 4:115–118PubMedCrossRefGoogle Scholar
  45. Walker JD, Geissman JW, Compilers (2009) Geologic time scale: geological society of America. Available at Accessed 5 July 2011
  46. Willingham BC, White GA (1976) Agronomic evaluation of prospective new crop species. V. Jarilla chocola – a proteinase source. Econ Bot 30:189–191CrossRefGoogle Scholar
  47. Wu X, Wang J, Na J, Yu Q, Moore RC, Zee F, Huber SC, Ming R (2010) The origin of the non-recombining region of sex chromosomes in Carica and Vasconcellea. Plant J 63:801–810PubMedCrossRefGoogle Scholar
  48. Yu Q, Navajas-Pérez R, Tong E, Robertson J, Moore PH, Paterson AH (2008) Recent origin of dioecious and gynodioecious Y chromosomes in papaya. Trop Plant Biol 1:49–57CrossRefGoogle Scholar
  49. Zhang W, Wang X, Yu Q, Ming R, Jiang J (2008) DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res 18:1938–1943PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Fernanda Antunes Carvalho
    • 1
  • Susanne S. Renner
    • 1
    Email author
  1. 1.Department of Systematic Botany and MycologyUniversity of MunichMunichGermany

Personalised recommendations