Skip to main content

Papaya as a Medicinal Plant

Part of the Plant Genetics and Genomics: Crops and Models book series (PGG,volume 10)

Abstract

Papaya has been used medicinally to treat an extremely broad range of ailments including intestinal worms, dengue fever, diabetes, hypertension, wound repair, and as an abortion agent. Although papaya is most commonly consumed as a ripe fruit, the plant tissues used as curatives are mainly derived from the seeds, young leaves, latex, or green immature fruit. The agents responsible for action have not been conclusively identified for all uses, but there is increasing evidence that activity may be attributable to benzyl isothiocyanate (BITC) in the case of anthelmintic and abortifacient action, and to the protease papain, and possibly chymopapain, in relation to wound repair. The location of these compounds in papaya tissues is likely to explain why different tissues are used for different ailments. Seeds, young leaves, and latex are good sources of BITC and are consequently used as a curative for intestinal worms. Immature green fruit is a good source of protease and is used as a topical application for burn wounds to accelerate tissue repair. The type of papaya tissue used may therefore provide a clue as to the active agent in ailments where papaya extracts have exhibited some activity (diabetes, hypertension, dengue fever). However, the compound(s) responsible for action remains to be identified. Modes of action of papaya extracts vary, but may include lowering blood glucose levels (diabetes), vascular muscle relaxation (hypertension), increasing blood cell count (dengue fever), stimulation of cell proliferation (wound healing), spasmodic contraction of uterine muscles (abortion), and induction of phase 2 enzymes (cancer chemoprevention). Although there has been increased study over the last decade into the physiological mode of action of papaya extracts, further increase in the knowledge of the compounds responsible for curative action will help to transfer the use of papaya from folklore remedies to mainstream medicinal use.

Keywords

  • Dengue Fever
  • Unripe Fruit
  • Cyanogenic Glycoside
  • Anthelmintic Activity
  • Intestinal Worm

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-8087-7_21
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-8087-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

References

  • Adebiyi A, Ganesan AP, Prasad AN (2002) Papaya (Carica papaya) consumption is unsafe in pregnancy: fact or fable? Scientific evaluation of a common belief in some parts of Asia using a rat model. Br J Nutr 88:199–203

    PubMed  CAS  CrossRef  Google Scholar 

  • Adebiyi A, Ganesan AP, Prasad AN (2003) Tocolytic and toxic activity of papaya seed extract on isolated rat uterus. Life Sci 74:581–592

    PubMed  CAS  CrossRef  Google Scholar 

  • Adeneye AA, Olagunju JA (2009) Preliminary hypoglycemic and hypolipidemic activities of the aqueous seed extract of Carica papaya Linn in Wistar rats. Biol Med 1:1–10

    Google Scholar 

  • Ahmad N, Fazal H, Ayaz M et al (2011) Dengue fever treatment with Carica papaya leaves extract. Asian Pac J Trop Biomed 1:330–333

    PubMed  CrossRef  Google Scholar 

  • Anuar NS, Zahari SS, Taib IA et al (2008) Effect of green and ripe Carica papaya epicarp extracts on wound healing and during pregnancy. Food Chem Toxicol 46:2384–2389

    PubMed  CAS  CrossRef  Google Scholar 

  • Banerjee A, Vaghasiya R, Shrivastava N et al (2006) Anti-hyperlipidemic effect of Carica papaya L. in Sprague Dawley rats. Nigerian J Nat Prod Med 10:69–72

    Google Scholar 

  • Basu A, Haldar S (2008) Dietary isothiocyanate mediated apoptosis of human cancer cells is associated with Bc1-xL phosphorylation. Int J Oncol 33:657–663

    PubMed  CAS  Google Scholar 

  • Bennett RN, Kiddle G, Wallsgrove RM (1997) Biosynthesis of benzylglucosinolate, cyanogenic glucosides and phenylpropanoids in Carica papaya. Phytochemistry 45:59–66

    CAS  CrossRef  Google Scholar 

  • Bhat PG, Surolia N (2001) In vitro anti-malarial activity of extracts of three plants used in the traditional medicine of India. Am J Trop Med Hyg 65:304–308

    PubMed  CAS  Google Scholar 

  • Broglie K, Chet I, Holliday M et al (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    PubMed  CAS  CrossRef  Google Scholar 

  • Buttle DJ, Barret AJ (1984) Chymopapain. Chromatographic purification and immunological characterization. Biochem J 223:81–88

    PubMed  CAS  Google Scholar 

  • Chen YT, Hsu LH, Huang IP et al (2007) Gene cloning and characterization of a novel recombinant antifungal chitinase from papaya (Carica papaya). J Agric Food Chem 55:714–722

    PubMed  CAS  CrossRef  Google Scholar 

  • Ching LS, Mohamed S (2001) Alpha-tocopherol content in 62 edible tropical plants. J Agric Food Chem 49:3101–3105

    PubMed  CAS  CrossRef  Google Scholar 

  • Chinoy NJ, Ranga GM (1984) Effects of Carica papaya seed extracts on the physiology of the vas deferens of albino rats. Acta Eur Fertil 15:59–65

    PubMed  CAS  Google Scholar 

  • Chinoy NJ, D’Souza JM, Padman P (1994) Effects of crude aqueous extract of Carica papaya seeds in male albino mice. Reprod Toxicol 8:75–79

    PubMed  CAS  CrossRef  Google Scholar 

  • Chinoy NJ, Dilip T, Harsha J (1995) Effect of Carica papaya seed extract on female rat ovaries and uteri. Phytother Res 9:169–175

    CrossRef  Google Scholar 

  • Chinoy NJ, Harsha J, Shilpa G et al (1997) Toxicity related response of female albino rats treated with benzene and alcoholic papaya seed extracts. Indian J Environ Toxicol 7:62–64

    Google Scholar 

  • Chung FL (1992) Chemoprevention of lung carcinogenesis by aromatic isothiocyanates. In: Wattenberg LW (ed) Cancer chemoprevention. CRC, Boca Raton, pp 227–245

    Google Scholar 

  • Consolini AE, Ragone MI (2008) Cardiovascular effects of some medicinal plants from the South American regions of the Rio de La Plata basin and Patagonia, Handbook of ethnopharmacology. Research Signpost, Trivandrum, pp 233–260

    Google Scholar 

  • Dang L, Wardlaw D, Hukins DW (2007) Removal of nucleus pulposus from the intervertebral disc – the use of chymopapain enhances mechanical removal with rongeurs: a laboratory study. BMC Musculoskelet Disord 8:122

    PubMed  CrossRef  CAS  Google Scholar 

  • Dar RN, Garg LC, Pathak RD (1965) Anthelmintic activity of Carica papaya seeds. Indian J Pharm 27:335–336

    Google Scholar 

  • de Oliveira JG, Vitoria AP (2011) Papaya: nutritional and pharmacological characterisation and quality loss due to physiological disorders. An overview. Food Res Int 44:1306–1313

    CrossRef  CAS  Google Scholar 

  • Devi S, Singh S (1978) Changes in the placenta of rat foetuses induced by maternal administration of papain. Indian J Exp Biol 16:1256–1260

    PubMed  CAS  Google Scholar 

  • dos Fernades Vieira RHS, dos Prazeres Rodrigues D, Goncalves FA et al (2001) Microbial effect of medicinal plant extracts (Psidium guajava and Carica papaya) upon bacteria isolated from fish muscle and known to induce diarrhoea in children. Rev Inst Med Trop S Paulo 43:145–148

    Google Scholar 

  • Dreuth J, Jansonius J, Koekoek R et al (1968) Structure of papain. Nature 218:929–932

    CrossRef  Google Scholar 

  • Egwim E (2005) Hypoglycemic potencies of crude ethanolic extracts of cashew roots and unripe pawpaw fruits in guinea pigs and rats. J Herb Pharmacother 5:27–34

    PubMed  CrossRef  Google Scholar 

  • Emeruwa AC (1982) Antibacterial substance from Carica papaya extract. J Nat Prod 45:123–127

    PubMed  CAS  CrossRef  Google Scholar 

  • Eno AE, Owo OI, Itam EH et al (2000) Blood pressure depression by the fruit juice of Carica papaya in renal and DOCA-induced hypertension in the rat. Phytother Res 14:235–239

    PubMed  CAS  CrossRef  Google Scholar 

  • Ettlinger MG, Hodgkins JE (1956) The mustard oil of papaya seed. J Org Chem 21:204–205

    CAS  CrossRef  Google Scholar 

  • Fakeye TO, Oladipupo TO, Showande O et al (2007) Effects of coadministration of extract of Carica papaya Linn (family Caricaceae) on activity of two oral hypoglycemic agents. Trop J Pharm Res 6:671–678

    CrossRef  Google Scholar 

  • Fernando PVD (1959) Preliminary investigation of Carica papaya seeds as a vermifuge. Indian J Child Health 8:96–100

    Google Scholar 

  • Food and Drug Research Laboratories (1974) Teratological evaluation of papain. Waverly, New York

    Google Scholar 

  • Garg SK (1974) Antifertility effect of oil from indigenous plants on female albino rats. Placenta Medica 26:391–393

    CrossRef  Google Scholar 

  • Garg SK, Garg GP (1970) Antifertility screening of plants. Part vii. Effect of five indigenous plants on early pregnancy in albino rats. Indian J Med Res 59:302–306

    Google Scholar 

  • George M, Pandalai KM (1949) Investigations on plant antibiotics. Part iv. Further search for antibiotic substances in Indian medicinal plants. Indian J Med Res 37:169–181

    CAS  Google Scholar 

  • Giordani R, Siepaio M, Moulin-Traffort J et al (1991) Antifungal action of Carica papaya latex: isolation of fungal cell wall hydrolysing enzymes. Mycoses 34:469–477

    PubMed  CAS  CrossRef  Google Scholar 

  • Giordani R, Cardenas ML, Moulin-Traffort J et al (1996) Fungicidal activity of latex sap from Carica papaya and anti-fungal effect of D(+)-glucosamine on Candida albicans growth. Mycoses 39:103–110

    PubMed  CAS  CrossRef  Google Scholar 

  • Giordani R, Gachon C, Moulin-Traffort J et al (1997) A synergistic effect of Carica papaya latex sap and fluconazole on Candida albicans growth. Mycoses 40:429–437

    PubMed  CAS  CrossRef  Google Scholar 

  • Gopalakrishnan M, Rajasekharasetty MR (1978) Effect of papaya (Carica papaya) on pregnancy and oestrous cycle in albino rats of Wistar strain. Indian J Physiol Pharmacol 22:66–70

    PubMed  CAS  Google Scholar 

  • Gostishchev VK, Afanas’ev AN, Khokhlov AM (1999) Surgical treatment of diabetic osteoarthropathy, complicated by pyogenic process in the feet. Khirurgiya 40–44 (in Russian)

    Google Scholar 

  • Guillaume MP, De Prez C, Cogan E (1996) Subacute mitochondrial liver disease in a patient with AIDS: possible relationship to prolong fluconazole administration. Am J Gastroenterol 91:165–168

    PubMed  CAS  Google Scholar 

  • Gupta A, Wambebe CO, Parsons DL (1990) Central and cardiovascular effects of the alcoholic extract of the leaves of Carica papaya. Int J Crude Drug Res 28:257–266

    Google Scholar 

  • Hewitt HS, Whittle S, Lopez S et al (2000) Topical use of papaya in chronic skin ulcer therapy in Jamaica. West Indian Med J 49:32–33

    PubMed  CAS  Google Scholar 

  • Hine RB, Aragaki M, Tokunaga J (1965) Enzymatic inactivation of the papaya blight fungus Phytophthora parasitica by papain and other proteolytic enzymes. Phytopathology 55: 1223–1226

    CAS  Google Scholar 

  • Joseph MA, Moysich KB, Freudenheim JL et al (2004) Cruciferous vegetables, genetic polymorphisms in glutathione-S-transferases M1 and T1, and prostate cancer risk. Nutr Cancer 50:206–213

    PubMed  CAS  CrossRef  Google Scholar 

  • Kambu K (1990) Elements de Phytotherapie Comparee. Plantes Medicinales Africaines. CRP, Kinshasa

    Google Scholar 

  • Kermanshai R, McCarry BE, Rosenfeld J et al (2001) Benzyl isothiocyanate is the chief or sole anthelmintic in papaya seed extracts. Phytochemistry 57:427–435

    PubMed  CAS  CrossRef  Google Scholar 

  • Kirtikar KR, Basu BD (1998) Indian medicinal plants, 2nd edn. International Book Distributors, Dehra Dun, vol II, pp 1097–1099

    Google Scholar 

  • Krishna KL, Paridhavi M, Patel JA (2008) Review on nutritional, medicinal and pharmacological properties of papaya (Carica papaya). Nat Prod Radiance 7:364–373

    Google Scholar 

  • Kusemiju O, Noronha C, Okanlawon A (2002) The effect of crude extract of the bark of Carica papaya on the seminiferous tubules of male Sprague–Dawley rats. Niger Postgrad Med J 9: 205–209

    PubMed  CAS  Google Scholar 

  • Lal J, Chandra S, Raviprakash V et al (1976) In vitro anthelmintic action of some indigenous medicinal plants on Ascaridia galli worms. Indian J Physiol Pharmacol 20:64–68

    PubMed  CAS  Google Scholar 

  • Lazzeri L, Tacconi R, Palmieri S (1993) In vitro activity of some glucosinolates and their reaction products toward a population of the nematode Heterodera schachtii. J Agric Food Chem 41:825–829

    CAS  CrossRef  Google Scholar 

  • Leite AA, Nardi RM, Nicoli JR et al (2005) Carica papaya seed macerate as inhibitor of conjugative R plasmid transfer from Salmonella typhimurium to Escherichia coli in vitro and in the digestive tract of genotobiotic mice. J Gen Appl Microbiol 51:21–26

    PubMed  CAS  CrossRef  Google Scholar 

  • Loh SP, Hadira O (2011) In vitro inhibitory potential of selected Malaysian plants against key enzymes involved in hyperglycemia and hypertension. Malays J Nutr 17:77–86

    PubMed  CAS  Google Scholar 

  • Lohiya NK, Goyal RB (1994) Antifertility investigations on the crude chloroform extract of Carica papaya seeds in male albino rats. Indian J Exp Biol 30:1051–1055

    Google Scholar 

  • Lohiya NK, Goyal RB, Jayaprakash D et al (1994) Antifertility effect of aqueous extract of Carica papaya seeds in male rats. Planta Med 60:400–404

    PubMed  CAS  CrossRef  Google Scholar 

  • Lohiya NK, Mishra PK, Pathak N et al (1999) Reversible contraception with chloroform extract of Carica papaya seeds in male rabbits. Reprod Toxicol 13:59–66

    PubMed  CAS  CrossRef  Google Scholar 

  • Lohiya NK, Pathak N, Mishra PK et al (2000) Contraceptive evaluation and toxicological study of aqueous extract of the seeds of Carica papaya in male rabbits. J Ethnopharmacol 70:17–27

    PubMed  CAS  CrossRef  Google Scholar 

  • Lohiya NK, Mishra PK, Pathak N et al (2002) Chloroform extract of Carica papaya seed induced long term reversible azoospermia in langur monkeys. Asian J Androl 4:17–26

    PubMed  CAS  Google Scholar 

  • Lozoya X, Meckes M, Abou Zaid M et al (1994) Quercetin glycosides in Psidium guajava leaves and determination of spasmolytic principle. Arch Med Res 25:11–15

    PubMed  CAS  Google Scholar 

  • Mezhlumyan LG, Kasymova TD, Yuldashev PK (2003) Proteinases from Carica papaya latex. Chem Nat Comp 39:223–228

    CAS  CrossRef  Google Scholar 

  • Miean KH, Mohamed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 49:3106–3112

    PubMed  CAS  CrossRef  Google Scholar 

  • Morales MA, Tortoriello J, Meckes M et al (1994) Calcium antagonist effect of quercetin and its relation with spasmolytic properties of Psidium guajava. Arch Med Res 25:17–21

    PubMed  CAS  Google Scholar 

  • Morayo O, Akinloye O (2010) Evaluation of andrological indices and testicular histology following chronic administration of aqueous extract of Carica papaya leaf in wistar rat. Afr J Pharm Pharmacol 7:325–333

    Google Scholar 

  • Moreno RL, Kent UM, Hodge K et al (1999) Inactivation of cytochrome P450 2E1 by benzyl isothiocyanate. Chem Res Toxicol 12:582–587

    PubMed  CAS  CrossRef  Google Scholar 

  • Mursof EP, He S (1991) A potential role of papaya latex as an anthelmintic against patent Ascaridia galli infection in chicken. Hemera Zoa 74:11–20

    Google Scholar 

  • Nakamura Y, Yoshimoto M, Murata Y et al (2007) Papaya seed represents a rich source of biologically active isothiocyanate. J Agric Food Chem 55:4407–4413

    PubMed  CAS  CrossRef  Google Scholar 

  • Nickell LG (1959) Antimicrobial activity of vascular plants. Econ Bot 13:281–318

    CAS  CrossRef  Google Scholar 

  • Nkuo-Akenji T, Ndip R, McThomas A et al (2001) Anti-salmonella activity of medicinal plants from Cameroon. Cent Afr J Med 47:155–158

    PubMed  CAS  Google Scholar 

  • O’Hare TJ, Wong LS, Williams DJ et al (2008) Papaw (Carica papaya) as a source of glucotropaeolin and its active derivative, benzyl-isothiocyanate. In: Proceedings of the tropical fruits in human nutrition and health Conference, Gold Coast, 8–11 November, 2008, pp 197–201

    Google Scholar 

  • Okeniyi JAO, Ogunlesi TA, Oyelami OA et al (2007) Effectiveness of dried Carica papaya seeds against human intestinal parasitosis: a pilot study. J Med Food 10:194–196

    PubMed  CrossRef  Google Scholar 

  • Olafsdottir ES, Jorgensen LB, Jaroszewski JW (2002) Cyanogenesis in glucosinolate-producing plants: Carica papaya and Carica quercifolia. Phytochemistry 60:269–273

    PubMed  CAS  CrossRef  Google Scholar 

  • Oloyede OI (2008) Effect of aqueous extract from unripe pulp of Carica papaya on transaminase activities in selected rabbit tissue of normal and alloxan induced diabetic rabbit. Biomed Pharmacol J 1:305–310

    Google Scholar 

  • Osato JA, Santiago LA, Remo GM et al (1993) Antimicrobial and antioxidant activities of unripe papaya. Life Sci 53:1383–1389

    PubMed  CAS  CrossRef  Google Scholar 

  • Otsuki N, Dang NH, Kumagai E et al (2010) Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J Ethnopharmacol 127:760–767

    PubMed  CrossRef  Google Scholar 

  • Panse TB, Paranjpe AS (1943) Isolation of carpasemine from papaya seeds. Proc Indian Acad Sci 18A:140

    CAS  Google Scholar 

  • Pathak N, Mishra PK, Manivannan B et al (2000) Sterility due to inhibition of sperm motility by oral administration of benzene chromatographic fraction of the chloroform extract of the seeds of Carica papaya in rats. Phytomedicine 7:325–333

    PubMed  CAS  CrossRef  Google Scholar 

  • Pieper B, Caliri MHL (2003) Non-traditional wound care: a review of the evidence for the use of sugar, papaya/papain, and fatty acids. J Wound Ostomy Continence Nurs 30:175–183

    PubMed  Google Scholar 

  • Pietretti A, Karioiti A, Sannella A et al (2010) Antiplasmodial in vivo activity of Carica papaya leaf decoction. Planta Med 76:P450. doi:10.1055/s-0030-1264748

    Google Scholar 

  • Prestera T, Holtzclaw WD, Zhang Y et al (1993) Chemical and molecular regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci USA 90:2965–2969

    PubMed  CAS  CrossRef  Google Scholar 

  • Purwati E, He S (1991) Pengaruh getah papaya (Carica papaya) terhadap infektivitas telur Ascaridia galli pada ayam. Hemera Zoa 74:1–5

    Google Scholar 

  • Quisumbing EA (1951) Medicinal plants of the Philippines. Dept Agric Nat Res Tech Bull 16, Philippines: Manila Bureau of Printing

    Google Scholar 

  • Reed G, Underkofler LA (1966) Enzymes in food processing. Academic, London

    Google Scholar 

  • Robinson P (1958) Seeds of Carica papaya for mass treatment against Ascariasis. Indian J Child Health 7:815–817

    Google Scholar 

  • Robinson GW (1975) Isolation and characterization of papaya peptidase A from commercial chymopapain. Biochemistry 14:3695–3700

    PubMed  CAS  CrossRef  Google Scholar 

  • Runnie I, Salleh MN, Mohamed RJ et al (2004) Vasorelaxation induced by common edible tropical plant extracts in isolated rat aorta and mesenteric vascular bed. J Ethnopharmacol 92:311–316

    PubMed  CAS  CrossRef  Google Scholar 

  • Saha JC, Savini EC, Kasinathan S (1961) Ecbolic properties of Indian medicinal plants. Part 1. Indian J Med Res 49:130

    CAS  Google Scholar 

  • Sannella AR, Karioti A, Vincieri FF et al (2009) Antiplasmodial activity of papaya leaf decoction and its synergistic effects in combination with artemisinin. Planta Med 75:PD37. doi:10.1055/s-0029-1234516

    Google Scholar 

  • Sathasivam K, Ramanathan S, Mansor SM et al (2009) Thrombocyte counts in mice after the administration of papaya leaf suspension. Wein Klin Wochenschr 121:19–22

    CrossRef  Google Scholar 

  • Satrija F, Nansen P, Murtini S et al (1995) Anthelmintic activity of papaya latex against patent Heligmosomoides polygyrus infections in mice. J Ethnopharmacol 48:161–164

    PubMed  CAS  CrossRef  Google Scholar 

  • Sattar N, Scherbakova O, Ford I et al (2004) Elevated alanine aminotransferase predicts new-onset type-2 diabetes independently of classical risk factors, metabolic syndrome, and c-reactive protein in the west of Scotland coronary prevention study. Diabetes 53:2855–2860

    PubMed  CAS  CrossRef  Google Scholar 

  • Schmidt H (1995) Effect of papain on different phases of prenatal ontogenesis in rats. Reprod Toxicol 9:49–55

    PubMed  CAS  CrossRef  Google Scholar 

  • Schweiggert RM, Steingass CB, Heller A et al (2011) Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.). Planta 234:1031–1044

    PubMed  CAS  CrossRef  Google Scholar 

  • Seigler DS, Pauli GF, Nahrsedt A et al (2002) Cyanogenic allosides and glycosides from Passiflora edulis and Carica papaya. Phytochemistry 60:873–882

    PubMed  CAS  CrossRef  Google Scholar 

  • Silva CA, Gomes MTR, Ferreira RS et al (2003) A mitogenic protein fraction in latex from Carica candamarcensis. Planta Med 10:926–932

    Google Scholar 

  • Singh A (1981) Medicinal plants in Fiji and other South Pacific Islands. Unpublished manuscript School of Natural Resources, University of the South Pacific, 65 pp

    Google Scholar 

  • Spencer CF, Koniuszy FR, Rogers EF et al (1947) Survey of plants for anti-malarial activity. Lloydia 10:145–174

    Google Scholar 

  • Starley IF, Mohammed P, Schneider G et al (1999) The treatment of paediatric burns using topical papaya. Burns 25:636–639

    PubMed  CAS  CrossRef  Google Scholar 

  • Stepek G, Buttle DJ, Duce IR et al (2005) Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode Heligmosomoides polygyrus in vitro. Parasitology 130:203–211

    PubMed  CAS  CrossRef  Google Scholar 

  • Tang CS (1971) Benzyl isothiocyanate in papaya fruit. Phytochemistry 10:117–121

    CAS  CrossRef  Google Scholar 

  • Tang CS (1973) Localisation of benzyl glucosinolate and thioglucosidase in Carica papaya fruit. Phytochemistry 12:769–773

    CAS  CrossRef  Google Scholar 

  • Tiikkainen M, Bergholm R, Vehkavaara S et al (2003) Effects of identical weight loss on body composition and features of insulin resistance in obese women with high and low liver fat content. Diabetes 52:701–707

    PubMed  CAS  CrossRef  Google Scholar 

  • Tiwari KC, Majumdar R, Bhattacharjee S (1982) Folklore information from Assam for family planning and birth control. Int J Crude Drug Res 20:133–137

    PubMed  CAS  Google Scholar 

  • Tona L, Kambu K, Ngimbi N et al (1998) Antiamoebic and phytochemical screening of some Congolese medicinal plants. J Ethnopharmacol 61:57–65

    PubMed  CAS  CrossRef  Google Scholar 

  • Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282

    CAS  CrossRef  Google Scholar 

  • van Breemen RB, Pajkovic N (2008) Multitargeted therapy of cancer by lycopene. Cancer Lett 269:339–351

    PubMed  CrossRef  CAS  Google Scholar 

  • van Cauteren H, Lampo A, Vanderberghe J et al (1989) Toxicological profile and safety evaluation of antifungal azole derivatives. Mycoses 32(Suppl 1):60–66

    PubMed  Google Scholar 

  • Virtanen AI (1965) Studies on organic sulphur compounds and other labile substances in plants. Phytochemistry 4:207–228

    CAS  CrossRef  Google Scholar 

  • Watson DC, Yaguchi M, Lynn KR (1990) The amino acid sequence of chymopapain from Carica papaya. Biochem J 266:75–81

    PubMed  CAS  Google Scholar 

  • Werner D (1992) Where there is no doctor. Hesperian Foundation, Palo Alto

    Google Scholar 

  • Winarno FG (1983) Enzym pangan. PT Gramedia, Jakarta, p 115

    Google Scholar 

  • World Health Organisation (1997) Dengue haemorrhagic fever: diagnosis, treatment, prevention and control, 2nd edn. WHO, Geneva

    Google Scholar 

  • Zasada IA, Ferris H (2003) Sensitivity of Meloidogyne javanica and Tylenchulus semipenetrans to isothiocyanates in laboratory assays. Phytopathology 93:747–750

    Google Scholar 

  • Zhang Y, Talalay P (1994) Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res 54(Suppl 7):1976s–1981s

    PubMed  CAS  Google Scholar 

  • Zhang R, Xu X, Chen T et al (2000) An assay for angiotensin-converting enzyme using capillary zone electrophoresis. Anal Biochem 280:286–290

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. O’Hare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

O’Hare, T.J., Williams, D.J. (2014). Papaya as a Medicinal Plant. In: Ming, R., Moore, P. (eds) Genetics and Genomics of Papaya. Plant Genetics and Genomics: Crops and Models, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8087-7_21

Download citation