Biology of the Papaya Plant

  • Víctor M. JiménezEmail author
  • Eric Mora-Newcomer
  • Marco V. Gutiérrez-Soto
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 10)


Papaya is a semi-woody, usually single-stemmed plant, widely distributed in tropical and subtropical regions. The plant is singular in several aspects: short-lived perennial growth habit, large palmate leaves, rapid growth, hollow stems, petioles and fruits, and high phenotypic plasticity. Papaya plants may have three possible sexual forms: female, male, and hermaphroditic. Additionally, alterations in sexual forms and flower structure have been related to environmental constraints, which consequently modify fruit production and morphology, respectively. The climacteric fruits that are produced continuously during the adult plant life are widely commercialized and differ between female and hermaphroditic plants. The latex that the plants produce profusely contains enzymes with industrial uses and many other important compounds. These morphological and ecophysiological attributes rely on highly efficient mechanisms of resource capture, transport, and utilization. High photosynthetic rates, carbon gain, reproductive output, and growth and plasticity occur at the expense of high water and nutrient demand. Association with mycorrhiza is important for plant nutrition. Physiological acclimation capacity is evident at the shoot, root, and reproductive levels. These attributes have implications in the design of sustainable cropping systems in tropical and subtropical environments and make the papaya plant an ideal model for ecophysiological studies of growth, acclimation capacity, sex expression and longevity, and the integration with population biology and evolutionary change.


Female Plant High Photosynthetic Rate Hermaphroditic Flower Papaya Fruit Perfect Flower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acosta C, González HV, Livera M, Matheis M (1999) Respuesta de las plantas de papayo al diferente número de frutos por planta. I. Distribución de biomasa. Rev Chapingo (México) Serie Hortic 5(2):131–136Google Scholar
  2. Allan P (2002) Carica papaya responses under cool subtropical growth conditions. Acta Hortic 575:757–763Google Scholar
  3. Allan P (2005) Phenology and production of Carica papaya “Honey Gold” under cool subtropical conditions. Acta Hortic 740:217–223Google Scholar
  4. Almeida FT, Marinho CS, Souza EF, Grippa S (2003) Expressão sexual do mamoeiro sob diferentes lâminas de irrigação na Região Norte Fluminense. Rev Brasil Fruticult 25:383–385CrossRefGoogle Scholar
  5. Arango-Wiesner LV (1999) El cultivo de la papaya en los llanos orientales de Colombia. Manual de Asistencia Técnica No 4, vol 4. Villavicencio, ColombiaGoogle Scholar
  6. Arkle TD, Nakasone HY (1984) Floral differentiation in the hermaphroditic papaya. HortScience 19(6):832–834Google Scholar
  7. Awada M (1953) Effects of moisture on yield and sex expression of the papaya plants (Carica papaya L.). Hawaii Agricultural Experiment Station Progress Notes 97, 4 ppGoogle Scholar
  8. Awada M (1958) Relationships of minimum temperature and growth rate with sex expression of papaya plants (Carica papaya L.). Hawaii Agric Exp Station Tech Bull 38:1–16Google Scholar
  9. Awada M, Ikeda WS (1957) Effects of water and nitrogen application on composition, growth, sugars in fruits, yield, and sex expression of the papaya plants (Carica papaya L.). Hawaii Agric Exp Station Tech Bull 33:3–16Google Scholar
  10. Azarkan M, El Moussaoui A, van Wuytswinkel D, Dehon G, Looze Y (2003) Fractionation and purification of the enzymes stored in the latex of Carica papaya. J Chromatogr B 790(1–2):229–238CrossRefGoogle Scholar
  11. Becker S (1958) The production of papain—an agricultural industry for tropical America. Econ Bot 12(1):62–79CrossRefGoogle Scholar
  12. Brown JE, Bauman JM, Lawrie JF, Rocha OJ, Moore RC (2012) The structure of morphological and genetic diversity in natural populations of Carica papaya (Caricaceae) in Costa Rica. Biotropica 44(2):179–188CrossRefGoogle Scholar
  13. Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Sternberg LDSL (2003) Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels. Plant Cell Environ 26(10):1633–1645CrossRefGoogle Scholar
  14. Bugbee B, Monje O (1992) The limits of crop productivity: theory and validation. Bioscience 42(7):494–502PubMedCrossRefGoogle Scholar
  15. Buisson D, Lee DW (1993) The developmental responses of papaya leaves to simulated canopy shade. Am J Bot 80(8):947–952CrossRefGoogle Scholar
  16. Campostrini E, Glenn DM (2007) Ecophysiology of papaya: a review. Braz J Plant Physiol 19:413–424CrossRefGoogle Scholar
  17. Canini A, Alesiani D, D’Arcangelo G, Tagliatesta P (2007) Gas chromatography–mass spectrometry analysis of phenolic compounds from Carica papaya L. leaf. J Food Compos Anal 20(7):584–590CrossRefGoogle Scholar
  18. Carneiro CE, Cruz JL (2009) Caracterização anatômica de órgãos vegetativos do mamoeiro. Ciênc Rural 39(3):918–921CrossRefGoogle Scholar
  19. Carvalho FA, Renner SA (2013) The phylogeny of Caricaceae. In: Ming R, Moore PH (eds) Genetics and genomics of papaya. Springer Science+Business Media, New YorkGoogle Scholar
  20. Chen NM, Paull RE (1986) Development and prevention of chilling injury in papaya fruit. J Am Soc Hortic Sci 111(4):639–643Google Scholar
  21. Clemente HS, Marler TE (2001) Trade winds reduce growth and influence gas exchange patterns in papaya seedlings. Ann Bot 88(3):379–385CrossRefGoogle Scholar
  22. Coelho Filho MA, Coelho EF, Cruz LL (2007) Uso da transpiração máxima de mamoeiro para o manejo de irrigação por gotejamento em regiões úmidas e sub-úmidas, vol 162, EMBRAPA. Cruz das Almas, BahiaGoogle Scholar
  23. Cohen E, Lavi U, Spiegel-Roy P (1989) Papaya pollen viability and storage. Sci Hortic 40(4):317–324CrossRefGoogle Scholar
  24. da Silva F, Pereira M, Junior P, Pereira T, Viana A, Daher R, Ramos H, Ferreguetti G (2007) Evaluation of the sexual expression in a segregating BC1 papaya population. Crop Breed Appl Biotechnol 7(1):16–23Google Scholar
  25. Dhekney SA, Litz RE, Moraga Amador DA, Yadav AK (2007) Potential for introducing cold tolerance into papaya by transformation with C-repeat binding factor (CBF) genes. Vitro Cell Dev Biol Plant 43(3):195–202CrossRefGoogle Scholar
  26. El Moussaoui A, Nijs M, Paul C, Wintjens R, Vincentelli J, Azarkan M, Looze Y (2001) Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism. Cell Mol Life Sci 58(4):556–570PubMedCrossRefGoogle Scholar
  27. El-Sharkawy M, Cock J, Hernandez A (1985) Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. Photosynth Res 7(2):137–149CrossRefGoogle Scholar
  28. Ewel JJ (1986) Designing agricultural ecosystems for the humid tropics. Annu Rev Ecol Syst 17(1):245–271CrossRefGoogle Scholar
  29. Fisher JB (1980) The vegetative and reproductive structure of papaya (Carica papaya). Lyonia 1:191–208Google Scholar
  30. Fisher JB, Mueller RJ (1983) Reaction anatomy and reorientation in leaning stems of balsa (Ochroma) and papaya (Carica). Can J Bot 61(3):880–887CrossRefGoogle Scholar
  31. Fitch MMM (2005) Carica papaya – Papaya. In: Litz RE (ed) Biotechnology of fruit and nut crops, vol 29. CABI, Cambridge, pp 174–207CrossRefGoogle Scholar
  32. Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? The secret life of laticifers. Trends Plant Sci 13(12):631–639PubMedCrossRefGoogle Scholar
  33. Hart RD (1980) A natural ecosystem analog approach to the design of a successional crop system for tropical forest environments. Biotropica 12(2):73–82CrossRefGoogle Scholar
  34. Iyer CPA, Kurian RM (2006) High density planting in tropical fruits: principles and practice. International Book Distributing Co, DelhiGoogle Scholar
  35. Khade SW, Rodrigues BF, Sharma PK (2010) Arbuscular mycorrhizal status and root phosphatase activities in vegetative Carica papaya L. varieties. Acta Physiol Plant 32(3):565–574CrossRefGoogle Scholar
  36. Kim M, Moore P, Zee F, Fitch MMM, Steiger D, Manshardt R, Paull R, Drew RA, Sekioka T, Ming R (2002) Genetic diversity of Carica papaya as revealed by AFLP markers. Genome 45(3):503–512PubMedCrossRefGoogle Scholar
  37. Konno K, Hirayama C, Nakamura M, Tateishi K, Tamura Y, Hattori M, Kohno K (2004) Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J 37(3):370–378PubMedCrossRefGoogle Scholar
  38. Leal-Costa MV, Munhoz M, Meissner Filho PE, Reinert F, Tavares ES (2010) Anatomia foliar de plantas transgênicas e não transgênicas de Carica papaya L. (Caricaceae). Acta Bot Brasil 24:595–597CrossRefGoogle Scholar
  39. León J (1987) Botánica de los cultivos tropicales. IICA, San JoséGoogle Scholar
  40. Madrigal SL, Ortiz NA, Cooke RD, Fernandez HR (1980) The dependence of crude papain yields on different collection (‘tapping’) procedures for papaya latex. J Sci Food Agric 31(3):279–285CrossRefGoogle Scholar
  41. Mahouachi J, Socorro A, Talon M (2006) Responses of papaya seedlings (Carica papaya L.) to water stress and re-hydration: growth, photosynthesis and mineral nutrient imbalance. Plant Soil 281(1):137–146CrossRefGoogle Scholar
  42. Marler TE (2000) Water conductance and osmotic potential of papaya (Carica papaya L.) roots as influenced by drought. In: Stokes A (ed) The supporting roots of trees and woody plants: form, function and physiology, vol 87. Kluwer, Dordrecht, pp 239–244Google Scholar
  43. Marler TE, Discekici HM (1997) Root development of ‘Red Lady’ papaya plants grown on a hillside. Plant Soil 195(1):37–42CrossRefGoogle Scholar
  44. Marler TE, Mickelbart MV (1998) Drought, leaf gas exchange, and chlorophyll fluorescence of field-grown papaya. J Am Soc Hortic Sci 123(4):714–718Google Scholar
  45. Martins DJ, Johnson SD (2009) Distance and quality of natural habitat influence hawkmoth pollination of cultivated papaya. Int J Trop Insect Sci 29(3):114–123CrossRefGoogle Scholar
  46. McCollum TG, D'Aquino S, McDonald RE (1993) Heat treatment inhibits mango chilling injury. HortScience 28(3):197–198Google Scholar
  47. Ming R, Yu Q, Moore PH (2007) Sex determination in papaya. Semin Cell Dev Biol 18(3):401–408PubMedCrossRefGoogle Scholar
  48. Ming R, Yu Q, Blas A, Chen C, Na JK, Moore PH (2008) Genomics of papaya, a common source of vitamins in the tropics. In: Moore PH, Ming R (eds) Genomics of tropical crop plants, vol 1. Springer Science+Business Media, New York, pp 405–420Google Scholar
  49. Morton J (1987) Papaya. In: Fruits of warm climates. Julia F. Morton, Miami, pp 336–346Google Scholar
  50. Nakasone HY, Lamoureux C (1982) Transitional forms of hermaphroditic papaya flowers leading to complete maleness. J Am Soc Hortic Sci 107(4):589–592Google Scholar
  51. Niklas KJ, Marler TE (2007) Carica papaya (Caricaceae): a case study into the effects of domestication on plant vegetative growth and reproduction. Am J Bot 94(6):999–1002PubMedCrossRefGoogle Scholar
  52. Oliveira JG, Vitória AP (2011) Papaya: nutritional and pharmacological characterization, and quality loss due to physiological disorders. An overview. Food Res Int 44(5):1306–1313CrossRefGoogle Scholar
  53. Paterson A, Felker P, Hubbell S, Ming R (2008) The fruits of tropical plant genomics. Trop Plant Biol 1(1):3–19CrossRefGoogle Scholar
  54. Paull RE, Jung Chen N (2000) Heat treatment and fruit ripening. Postharvest Biol Technol 21(1):21–37CrossRefGoogle Scholar
  55. Paz L, Vázquez-Yanes C (1998) Comparative seed ecophysiology of wild and cultivated Carica papaya trees from a tropical rain forest region in Mexico. Tree Physiol 18(4):277–280PubMedCrossRefGoogle Scholar
  56. Pino JA, Almora K, Marbot R (2003) Volatile components of papaya (Carica papaya L., Maradol variety) fruit. Flavour Fragrance J 18(6):492–496CrossRefGoogle Scholar
  57. Porter BW, Zhu YJ, Webb DT, Christopher DA (2009) Novel thigmomorphogenetic responses in Carica papaya: touch decreases anthocyanin levels and stimulates petiole cork outgrowths. Ann Bot 103(6):847–858PubMedCrossRefGoogle Scholar
  58. Posse RP, Sousa EF, Bernardo S, Pereira MG, Gottardo RD (2009) Total leaf area of papaya trees estimated by a nondestructive method. Scientia Agricola 66:462–466CrossRefGoogle Scholar
  59. Ramos HCC, Pereira MG, Silva FF, Viana AP, Ferreguetti GA (2011) Seasonal and genetic influences on sex expression in a backcrossed segregating papaya population. Crop Breed Appl Biotechnol 11:97–105CrossRefGoogle Scholar
  60. Reis FO, Campostrini E, Sousa EF, Silva MG (2006) Sap flow in papaya plants: Laboratory calibrations and relationships with gas exchanges under field conditions. Sci Hortic 110(3):254–259CrossRefGoogle Scholar
  61. Rodrigues S, Da Cunha M, Ventura JA, Fernandes P (2009) Effects of the Papaya meleira virus on papaya latex structure and composition. Plant Cell Rep 28(5):861–871PubMedCrossRefGoogle Scholar
  62. Ronse Decraene LP, Smets EF (1999) The floral development and anatomy of Carica papaya (Caricaceae). Can J Bot 77(4):582–598Google Scholar
  63. Roth I (1977) Fruits of angiosperms. Borntraeger, Berlin, xvi, 675 pp. (Handbuch der Pflanzenanatomie spezieller Teil, Band x, Teil 1). Anatomy and Morphology (KR, 197706808)Google Scholar
  64. Roth I, Clausnitzer I (1972) Desarrollo y anatomia del fruto y de la semilla de Carica papaya L. (lechosa). Acta Bot Venezuelica 7:187–206Google Scholar
  65. Schweiggert R, Steingass C, Heller A, Esquivel P, Carle R (2011a) Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.). Planta 234(5):1031–1044PubMedCrossRefGoogle Scholar
  66. Schweiggert RM, Steingass CB, Mora E, Esquivel P, Carle R (2011b) Carotenogenesis and physico-chemical characteristics during maturation of red fleshed papaya fruit (Carica papaya L.). Food Res Int 44(5):1373–1380CrossRefGoogle Scholar
  67. Sheldrake AR (1969) Cellulase in latex and its possible significance in cell differentiation. Planta 89(1):82–84CrossRefGoogle Scholar
  68. Sritakae A, Praseartkul P, Cheunban W, Miphokasap P, Eiumnoh A, Burns P, Phironrit N, Phuangrat B, Kitsubun P, Meechai A (2011) Mapping airborne pollen of papaya (Carica papaya L.) and its distribution related to land use using GIS and remote sensing. Aerobiologia 27(4):291–300CrossRefGoogle Scholar
  69. Storey WB (1953) Genetics of the papaya. J Hered 44(2):70–78Google Scholar
  70. Teixeira da Silva JA, Rashid Z, Nhut DT, Sivakumar D, Gera A, Souza MT Jr, Tennant PF (2007) Papaya (Carica papaya L.) biology and biotechnology. Tree Forest Sci Biotechnol 1(1):47–73Google Scholar
  71. Todaria N (1986) Respiration rates of some greenhouse cultivated tropical and subtropical species. Biol Plant 28(4):280–287CrossRefGoogle Scholar
  72. Vega-Frutis R, Guevara R (2009) Different arbuscular mycorrhizal interactions in male and female plants of wild Carica papaya L. Plant Soil 322(1):165–176CrossRefGoogle Scholar
  73. Villachica H, Raven K (1986) Nutritional deficiencies of pawpaws (Carica papaya L.) in the central tropical forest of Peru. Turrialba 36(4):523–531Google Scholar
  74. Walsh KB, Ragupathy S (2007) Mycorrhizal colonisation of three hybrid papayas (Carica papaya) under mulched and bare ground conditions. Aust J Exp Agric 47:81–85CrossRefGoogle Scholar
  75. Zhou L, Paull RE (2001) Sucrose metabolism during papaya (Carica papaya) fruit growth and ripening. J Am Soc Hortic Sci 126(3):351–357Google Scholar
  76. Zhou L, Christopher DA, Paull RE (2000) Defoliation and fruit removal effects on papaya fruit production, sugar accumulation, and sucrose metabolism. J Am Soc Hortic Sci 125(5):644–652Google Scholar
  77. Zunjar V, Mammen D, Trivedi BM, Daniel M (2011) Pharmacognostic, physicochemical and phytochemical studies on Carica papaya Linn. leaves. Pharmacognosy J 3(20):5–8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Víctor M. Jiménez
    • 1
    • 2
    Email author
  • Eric Mora-Newcomer
    • 3
  • Marco V. Gutiérrez-Soto
    • 3
  1. 1.CIGRAS, Universidad de Costa RicaSan PedroCosta Rica
  2. 2.Food Security CenterUniversity of HohenheimStuttgartGermany
  3. 3.Estación Experimental Agrícola Fabio Baudrit MorenoUniversidad de Costa RicaAlajuelaCosta Rica

Personalised recommendations