Advertisement

Papaya Repeat Database

  • Niranjan Nagarajan
  • Rafael Navajas-PérezEmail author
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 10)

Abstract

In this chapter, we report a detailed analysis of repetitive elements in the papaya genome, including transposable elements (TEs), tandemly arrayed sequences, and high copy number genes. These repetitive sequences account for ~56 % of the papaya genome, with TEs being the most abundant at 52 %, tandem repeats at 1.3 %, and high copy number genes at 3 %. Most common types of TEs are represented in the papaya genome with retrotransposons being the dominant class, accounting for 40 % of the genome. The most prevalent retrotransposons are Ty3–gypsy (27.8 %) and Ty1–copia (5.5 %). Among the tandem repeats, microsatellites are the most abundant in number but represent only 0.19 % of the genome. Minisatellites and satellites are less abundant but represent 0.68 and 0.43 % of the genome, respectively, due to greater repeat length. Despite an overall smaller gene repertoire in papaya than many other angiosperms, a significant fraction of genes (>2 %) are present in large gene families with copy number greater than 20. Papaya sex chromosomes are significantly enriched of a repertoire of repetitive sequences, and the male-specific region expanded by massively accumulation of repeated DNA, representing 83 % (mostly TE), while the corresponding X region included 70 % of such repeats. In an effort to integrate all the information, we provide here the pipeline to gather and process data related to repetitive elements in papaya.

Keywords

Tandem Repeat Repetitive Sequence Repetitive Element Satellite DNAs Bacterial Artificial Chromosome Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arabidopsis Genome Initiative (2001) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  2. Arkhipova IR (2005) Mobile genetic elements and sexual reproduction. Cytogenet Genome Res 110(1–4):372–382PubMedCrossRefGoogle Scholar
  3. Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot (Lond) 95:127–132CrossRefGoogle Scholar
  4. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580PubMedCrossRefGoogle Scholar
  5. Bergero R, Forrest A, Kamau E, Charlesworth D (2007) Evolutionary strata on the X chromosomes of the dioecious plant Silene latifolia: evidence from new sex-linked genes. Genetics 175:1945–1954PubMedCrossRefGoogle Scholar
  6. Bousios A, Minga E, Kalitsou N, Pantermali M, Tsaballa A, Darzentas N (2012) MASiVEdb: the sirevirus plant retrotransposon database. BMC Genomics 13(1):158PubMedCrossRefGoogle Scholar
  7. Camacho JP, Sharbel TF, Beukeboom LW (2000) B-chromosome evolution. Philos Trans R Soc Lond B Biol Sci 355:163–178PubMedCrossRefGoogle Scholar
  8. Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95(2):118–128PubMedCrossRefGoogle Scholar
  9. Chen C, Yu Q, Hou S, Li Y, Eustice M, Skelton RL, Veatch O, Herdes RE, Diebold L, Saw J, Feng Y, Qian W, Bynum L, Wang L, Moore PH, Paull RE, Alam M, Ming R (2007) Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in Brassicales. Genetics 177(4):2481–2491PubMedCrossRefGoogle Scholar
  10. Cheng XD, Ling HQ (2006) Non-LTR retrotransposons: LINEs and SINEs in plant genome. Yichuan 28:731–736Google Scholar
  11. Contento A, Heslop-Harrison JS, Schwarzacher T (2005) Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet Genome Res 109:34–42PubMedCrossRefGoogle Scholar
  12. de la Herrán R, Cuñado N, Navajas-Pérez R, Santos JL, Ruiz Rejón C, Garrido-Ramos MA, Ruiz Rejón M (2005) The controversial telomeres of lily plants. Cytogenet Genome Res 109(1–3):144–147PubMedGoogle Scholar
  13. Edgar RC, Myers EW (2005) PILER: identification and classification of genomic repeats. Bioinformatics 21(Suppl 1):i152–i158Google Scholar
  14. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5(6):435–445PubMedCrossRefGoogle Scholar
  15. Eustice M, Yu Q, Lai C, Hou S, Thimmapuram J, Liu L, Alam M, Moore P, Presting G, Ming R (2008) Development and application of microsatellite markers for genomic analysis of papaya. Tree Genet Genomes 4:333–341CrossRefGoogle Scholar
  16. Fajkus J, Kovarik A, Kralovics R, Bezdek M (1995) Organization of telomeric and subtelomeric chromatin in the higher plant Nicotiana tabacum. Mol Gen Genet 247:633–638PubMedCrossRefGoogle Scholar
  17. Fedoroff N (2000) Transposons and genome evolution in plants. Proc Natl Acad Sci USA 97(13):7002–7007PubMedCrossRefGoogle Scholar
  18. Ganal MW, Lapitan NL, Tanksley SD (1991) Macrostructure of the tomato telomeres. Plant Cell 3:87–94PubMedGoogle Scholar
  19. Gemayel R, Vinces MD, Legendre M, Verstrepen KJ (2010) Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet 44:445–477PubMedCrossRefGoogle Scholar
  20. Gschwend AR, Yu Q, Moore P, Saski C, Chen C, Wang J, Na JK, Ming R (2011) Construction of papaya male and female BAC libraries and application in physical mapping of the sex chromosomes. J Biomed Biotechnol 2011:929472PubMedCrossRefGoogle Scholar
  21. Gschwend AR, Yu Q, Tong EJ, Zeng F, Han J, VanBuren R, Aryal R, Charlesworth D, Moore PH, Paterson AH, Ming R (2012) Rapid divergence and expansion of the X chromosome in papaya. Proc Natl Acad Sci USA. 109(34):13716–13721Google Scholar
  22. Harrison GE, Heslop-Harrison JS (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet 90:157–165CrossRefGoogle Scholar
  23. Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable “minisatellite” regions in human DNA. Nature 314:67–73PubMedCrossRefGoogle Scholar
  24. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421(6919):163–167PubMedCrossRefGoogle Scholar
  25. Jurka J (2003) Repetitive DNA: detection, annotation, and analysis. In: Krawetz SA, Womble DD (eds) Introduction to bioinformatics: a theoretical and practical approach. Humana Press, TotowaGoogle Scholar
  26. Kipling D (1995) The telomere. Oxford University Press, OxfordGoogle Scholar
  27. Kubis SE, Schmidt T, Heslop-Harrison JS (1998) Repetitive DNA elements as a major component of plant genomes. Ann Bot (Lond) 82:45–55CrossRefGoogle Scholar
  28. Li W, Godzik A (2006) CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659PubMedCrossRefGoogle Scholar
  29. Lim KB, de Jong H, Yang TJ, Park JY, Kwon SJ, Kim JS, Lim MH, Kim JA, Jin M, Jin YM, Kim SH, Lim YP, Bang JW, Kim HI, Park BS (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol Cells 19:436–444PubMedGoogle Scholar
  30. Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, Tamarit D, Aguilar-Rodríguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F, Muñoz-Pomer A, Sempere JM, Latorre A, Moya A (2011) The gypsy database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 39 (database issue):D70–D74Google Scholar
  31. Lunyak VV, Prefontaine GG, Núñez E, Cramer T, Ju BG, Ohgi KA, Hutt K, Roy R, García-Díaz A, Zhu X, Yung Y, Montoliu L, Glass CK, Rosenfeld MG (2007) Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317(5835):248–251PubMedCrossRefGoogle Scholar
  32. Ma H, Moore PH, Liu Z, Kim MS, Yu Q, Fitch MM, Sekioka T, Paterson AH, Ming R (2004) High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166(1):419–436PubMedCrossRefGoogle Scholar
  33. Macas J, Mészáros T, Nouzová M (2002) PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18:28–35PubMedCrossRefGoogle Scholar
  34. Martienssen R, Irish V (1999) Copying out our ABCs: the role of gene redundancy in interpreting genetic hierarchies. Trends Genet 15(11):435–437PubMedCrossRefGoogle Scholar
  35. Martinez-Zapater JM, Estelle MA, Somerville CR (1986) A highly repeated DNA sequence in Arabidopsis thaliana. Mol Gen Genet 204:417–423CrossRefGoogle Scholar
  36. Matsunaga S (2009) Junk DNA promotes sex chromosome evolution. Heredity 102:525–526PubMedCrossRefGoogle Scholar
  37. McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355PubMedCrossRefGoogle Scholar
  38. Meagher TR, Vassiliadis C (2005) Phenotypic impacts of repetitive DNA in flowering plants. New Phytol 168:71–80PubMedCrossRefGoogle Scholar
  39. Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Soderlund CA, Mayer KF, Wing RA (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354PubMedCrossRefGoogle Scholar
  40. Miklos GL (1985) Localited highly repetitive DNA sequences in vertebrate and invertebrate genomes. In: McIntryre JR (ed) Molecular evolutionary genetics. Plenum, New YorkGoogle Scholar
  41. Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA, Jiang J (1998) Cloning and characterization of a centromere specific DNA element from Sorghum bicolor. Theor Appl Genet 96:832–839CrossRefGoogle Scholar
  42. Ming R, Moore PH, Zee F, Abbey CA, Ma H, Paterson AH (2001) Construction and characterization of a papaya BAC library as a foundation for molecular dissection of a tree-fruit genome. Theor Appl Genet 102:892–899CrossRefGoogle Scholar
  43. Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996PubMedCrossRefGoogle Scholar
  44. Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annu Rev Plant Biol 62:485–514PubMedCrossRefGoogle Scholar
  45. Na JK, Wang J, Murray JE, Gschwend AR, Zhang W, Yu Q, Navajas-Pérez R, Feltus FA, Chen C, Kubat Z, Moore PH, Jiang J, Paterson AH, Ming R (2012) Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genomics 13:176Google Scholar
  46. Nagarajan N, Pop M (2009) Parametric complexity of sequence assembly: theory and applications to next generation sequencing. J Comput Biol 16(7):897–908PubMedCrossRefGoogle Scholar
  47. Nagarajan N, Navajas-Pérez R, Pop M, Alam M, Ming R, Paterson AH, Salzberg SL (2008) Genome-wide analysis of repetitive elements in papaya. Trop Plant Biol 1(3–4):191–201CrossRefGoogle Scholar
  48. Navajas-Pérez R (2012) The genus Rumex: a plant model to study sex-chromosomes evolution. In: Navajas-Pérez R (ed) New insights on plant sex chromosomes, 1st edn. Nova, HauppaugeGoogle Scholar
  49. Navajas-Pérez R, Paterson AH (2009) Patterns of tandem repetition in plant whole genome assemblies. Mol Gen Genomics 281:579–590CrossRefGoogle Scholar
  50. Navajas-Pérez R, Rubio-Escudero C, Aznarte JL, Ruiz Rejón M, Garrido-Ramos MA (2007) satDNA Analyzer: a computing tool for satellite-DNA evolutionary analysis. Bioinformatics 23(6):767–768PubMedCrossRefGoogle Scholar
  51. Navajas-Pérez R, Quesada del Bosque ME, Garrido-Ramos MA (2009a) Effect of location, organization, and repeat copy number in satellite-DNA evolution. Mol Gen Genomics 282:395–406CrossRefGoogle Scholar
  52. Navajas-Pérez R, Schwarzacher T, Ruiz Rejón M, Garrido-Ramos MA (2009b) Characterization of RUSI, a telomere-associated satellite-DNA, in the genus Rumex (Polygonaceae). Cytogenet Genome Res 124(1):81–89PubMedCrossRefGoogle Scholar
  53. Novikov A, Smyshlyaev G, Novikova O (2012) Evolutionary history of LTR retrotransposon chromodomains in plants. Int J Plant Genomics 2012:874743PubMedCrossRefGoogle Scholar
  54. Ohno S (1972) So much “junk” DNA in our genome. Brookhaven Symp Biol 23:366–370PubMedGoogle Scholar
  55. Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607PubMedCrossRefGoogle Scholar
  56. Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73(4):565–576PubMedCrossRefGoogle Scholar
  57. Pérez OJ, Dambier D, Ollitrault P, Coppens DG et al (2006) Microsatellite markers in Carica papaya L.: isolation, characterization and transferability to Vasconcellea species. Mol Ecol Notes 6:212–217CrossRefGoogle Scholar
  58. Petracek ME, Lefebvre PA, Silflow CD, Berman J (1990) Chlamydomonas telomere sequences are A + T rich but contain three consecutive G-C base pairs. Proc Natl Acad Sci USA 87:8222–8226PubMedCrossRefGoogle Scholar
  59. Poole RL (2007) The TAIR database. Methods Mol Biol 406:179–212PubMedGoogle Scholar
  60. Price AL, Jones NC, Pevzner PA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21:351–358CrossRefGoogle Scholar
  61. Ramos HC, Pereira MG, Silva FF, Gonçalves LS, Pinto FO, de Souza Filho GA, Pereira TS (2011) Genetic characterization of papaya plants (Carica papaya L.) derived from the first backcross generation. Genet Mol Res 10(1):393–403PubMedCrossRefGoogle Scholar
  62. Ray DA (2007) SINEs of progress: mobile element applications to molecular ecology. Mol Ecol 16(1):19–33PubMedCrossRefGoogle Scholar
  63. Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127–136PubMedCrossRefGoogle Scholar
  64. Riethman H, Ambrosini A, Paul S (2005) Human subtelomere structure and variation. Chromosome Res 13:505–515PubMedCrossRefGoogle Scholar
  65. Robles F, De La Herrán R, Ludwig A, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA (2004) Evolution of ancient satellite DNAs in sturgeon genomes. Gene 338:133–142PubMedCrossRefGoogle Scholar
  66. Román AC, González-Rico FJ, Moltó E, Hernando H, Neto A, Vicente-García C, Ballestar E, Gómez-Skarmeta JL, Vavrova-Anderson J, White RJ, Montoliu L, Fernández-Salguero PM (2011) Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch. Genome Res 21(3):422–432PubMedCrossRefGoogle Scholar
  67. Saini N, Shultz J, Lightfoot DA (2008) Re-annotation of the physical map of Glycine max for polyploid-like regions by BAC end sequence driven whole genome shotgun read assembly. BMC Genomics 9:323PubMedCrossRefGoogle Scholar
  68. Santos SC, Ruggiero C, Silva CLSP, Lemos GM (2003) A microsatellite library for Carica papaya L. cv Sunrise Solo. Rev Bras Frutic 25:263–267CrossRefGoogle Scholar
  69. Schmidt AL, Anderson LM (2006) Repetitive DNA elements as mediators of genomic change in response to environmental cues. Biol Rev Camb Philos Soc 81(4):531–543Google Scholar
  70. Shakirov EV, Salzberg SL, Alam M, Shippen DE (2008) Analysis of Carica papaya telomeres and telomere-associated proteins: insights into the evolution of telomere maintenance in Brassicales. Trop Plant Biol 1(3–4):202–215PubMedCrossRefGoogle Scholar
  71. Sola-Campoy PJ, de la Herrán R, Ruiz Rejón C, Navajas-Pérez R (2012) Plant sex-chromosomes evolution. In: Navajas-Pérez R (ed) New insights on plant sex chromosomes, 1st edn. Nova, HauppaugeGoogle Scholar
  72. Sykorova E, Lim KY, Chase MW, Knapp S, Leitch IJ, Leitch AR, Fajkus J (2003) The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Plant J 34:283–291PubMedCrossRefGoogle Scholar
  73. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452PubMedCrossRefGoogle Scholar
  74. Thomas CA Jr (1971) The genetic organization of chromosomes. Annu Rev Genet 5:237–256PubMedCrossRefGoogle Scholar
  75. Thornburg BG, Gotea V, Makalowski W (2006) Transposable elements as a significant source of transcription regulating signals. Gene 365:104–110PubMedCrossRefGoogle Scholar
  76. Ugarkovic D, Plohl M (2002) Variation in satellite DNA profiles, causes and effects. EMBO J 21:5955–5959PubMedCrossRefGoogle Scholar
  77. Wang ZX, Kurata N, Saji S, Katayose Y, Minobe Y (1995) A chromosome 5-specific repetitive DNA sequence in rice (Oryza sativa L.). Theor Appl Genet 90:907–913CrossRefGoogle Scholar
  78. Wang J, Chen C, Na JK, Yu Q, Hou S, Paull RE, Moore PH, Alam M, Ming R (2008) Genome-wide comparative analyses of microsatellites in papaya. Trop Plant Biol 1(3–4):278–292CrossRefGoogle Scholar
  79. Wang Y, Wang X, Paterson AH (2012) Genome and gene duplications and gene expression divergence: a view from plants. Ann N Y Acad Sci 1256(1):1–14PubMedCrossRefGoogle Scholar
  80. Wang J, Na JK, Yu Q, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, Navajas-Pérez R, Feltus FA, Lemke C, Tong EJ, Chen C, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang J, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci USA. 109(34):13710– 13715Google Scholar
  81. Wang J, Na J-K, Ming R (2013) Physical mapping of papaya sex chromosomes. In: Ming R, Moore P (eds) Genetics and genomics of papaya. Springer Science + Business Media, New YorkGoogle Scholar
  82. Watson JM, Riha K (2010) Comparative biology of telomeres: where plants stand. FEBS Lett 584(17):3752–3759PubMedCrossRefGoogle Scholar
  83. Yu Q, Hou S, Hobza R, Feltus FA, Wang X, Jin W, Skelton RL, Blas A, Lemke C, Saw JH, Moore PH, Alam M, Jiang J, Paterson AH, Vyskot B, Ming R (2007) Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Mol Genet Genomics 278(2):177–185PubMedCrossRefGoogle Scholar
  84. Yunis JJ, Yasmineh WG (1971) Heterochromatin, satellite DNA, and cell function. Science 174(4015):1200–1209PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computational and Systems BiologyGenome Institute of SingaporeSingaporeSingapore
  2. 2.Facultad de Ciencias, Departamento de GenéticaUniversidad de GranadaGranadaSpain

Personalised recommendations