Capacity, Fairness, and QoS Trade-Offs in Wireless Networks with Applications to LTE

  • Emanuel B. Rodrigues
  • Francisco R. M. Lima
  • Ferran Casadevall
  • Francisco Rodrigo Porto Cavalcanti
Chapter

Abstract

Wireless mobile network optimization is a complex task that consists in achieving different design objectives such as spectral efficiency, energy efficiency, fairness, and quality of service. Radio resource allocation is responsible for managing the available resources in the radio access interface and, therefore, is an important tool for optimizing networks and achieving the designed objectives mentioned previously. However, in general all these network design objectives cannot be achieved at the same time by resource allocation strategies. In fact, different resource allocation strategies can be designed to maximize one objective in detriment of the other as well as to balance the objectives. In this chapter we deal with important trade-offs between contradicting objectives in modern wireless mobile networks: capacity versus fairness and capacity versus satisfaction. We present resource allocation strategies that can achieve static and adaptive performances when the previously mentioned trade-offs are considered. In order to design the resource allocation strategies we consider heuristics and utility-based solutions. System-level simulations show that the proposed techniques are powerful tools to the network operator, since they can decide in which trade-off point of the capacity-fairness or capacity-satisfaction planes they want to operate the system.

Keywords

Hexagonal Assure Expense 

References

  1. 1.
    3GPP: Deployment aspects. Technical report TR 25.943 V9.0.0, Third Generation Partnership Project (2009)Google Scholar
  2. 2.
    3GPP: Evolved universal terrestrial radio access (E-UTRA); physical layer procedures. Technical report TR 36.213 V8.6.0, Third Generation Partnership Project (2009)Google Scholar
  3. 3.
    Agrawal, R., Berry, R., Huang, J., Subramanian, V.: Optimal scheduling for OFDMA systems. In: Proceedings of the 40th Asilomar Conference on Signals, Systems and Computers (ACSSC), pp. 1347–1351 (2006). doi:  10.1109/ACSSC.2006.354976
  4. 4.
    Ameigeiras, P., Wigard, J., Mogensen, P.: Performance of packet scheduling methods with different degree of fairness in HSDPA. In: Proceedings of the IEEE 60th Vehicular Technology Conference (VTC-Fall), vol. 2, pp. 860–864 (2004). doi:  10.1109/VETECF.2004.1400143
  5. 5.
    Aniba, G., Aissa, S.: Adaptive proportional fairness for packet scheduling in HSDPA. In: Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), vol. 6, pp. 4033–4037 (2004). doi: 10.1109/GLOCOM.2004.1379124
  6. 6.
    Chiu, D.M., Jain, R.: Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Comput. Netw. ISDN Syst. 17(1), 1–14 (1989). http://dx.doi.org/10.1016/0169-7552(89)90019-6
  7. 7.
    Doirieux, S., Baynat, B., Begin, T.: On finding the right balance between fairness and efficiency in WiMAX scheduling through analytical modeling. In: Proceedings of the IEEE International Symposium on Modeling, Analysis Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 1–10 (2009). doi:  10.1109/MASCOT.2009.5366812
  8. 8.
    Gross, J., Bohge, M.: Dynamic mechanisms in OFDM wireless systems: a survey on mathematical and system engineering contributions. Technical report TKN-06-001, Telecommunication Networks Group, Technical University of Berlin (2006)Google Scholar
  9. 9.
    Haider, A., Harris, R.: A novel proportional fair scheduling algorithm for HSDPA in UMTS networks. In: Proceedings of the 2nd International Conference on Wireless Broadband and Ultra Wideband Communications: AusWireless, pp. 1–7 (2007). doi:  10.1109/AUSWIRELESS.2007.9
  10. 10.
    Holma, H., Toskala, A. (eds.): WCDMA for UMTS: Radio Access for Third Generation Mobile Communications, 3rd edn. Wiley, New York (2004)Google Scholar
  11. 11.
    Hoo, L.M.C., Halder, B., Tellado, J., Cioffi, J.M.: Multiuser transmit optimisation for multicarrier broadcast channels: asymptotic FDMA capacity region and algorithms. IEEE Trans. Commun. 52(6), 922–930 (2004)CrossRefGoogle Scholar
  12. 12.
    Hosein, P.A.: QoS control for WCDMA high speed packet data. In: Proceedings of the 4th International Workshop on Mobile and Wireless Communications Network, pp. 169–173 (2002). doi:  10.1109/MWCN.2002.1045716
  13. 13.
    Hou, H., Zhou, W., Zhou, S., Zhu, J.: Cross-layer resource allocation for heterogeneous traffic in multiuser OFDM based on a new QoS fairness criterion. In: Proceedings of the IEEE 66th Vehicular Technology Conference (VTC-Fall), pp. 1593–1597 (2007). doi:  10.1109/VETECF.2007.338
  14. 14.
  15. 15.
    ITU-R: Requirements related to technical performance for IMT-advanced radio interface(s). Technical report M.2134, ITU-R (2008)Google Scholar
  16. 16.
    Jain, R., Chiu, D., Hawe, W.: A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. Technical report TR-301, DEC Research (1984)Google Scholar
  17. 17.
    Jakes, W.C.: Microwave Mobile Communications. Wiley, New york (1994)CrossRefGoogle Scholar
  18. 18.
    Jang, J., Lee, K.B.: Transmit power adaptation for multiuser OFDM systems. IEEE J. Sel. Areas Commun. 21(2), 171–178 (2003)CrossRefGoogle Scholar
  19. 19.
    Kelly, F.: Charging and rate control for elastic traffic. Eur. Trans. Commun. 8, 33–37 (1997)Google Scholar
  20. 20.
    Khan, M.A., Vesilo, R., Collings, I.B., Davis, L.M.: Alpha-rule scheduling for MIMO broadcast wireless channels with linear receivers. In: Proceedings of the Australian Communications Theory Workshop (AusCTW), pp. 110–115 (2009). doi:  10.1109/AUSCTW.2009.4805610
  21. 21.
    Kim, I., Lee, H.L., Kim, B., Lee, Y.H.: On the use of linear programming for dynamic subchannel and bit allocation in multiuser OFDM. In: Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), vol. 6, pp. 3648–3652 (2001)Google Scholar
  22. 22.
    Kivanc, D., Guoqing, L., Hui, L.: Computationally efficient bandwidth allocation and power control for OFDMA. IEEE Trans. Wireless Commun. 2(6), 1150–1158 (2003)CrossRefGoogle Scholar
  23. 23.
    Lee, M., Oh, S.K.: A simple scheduling algorithm capable of controlling throughput-fairness tradeoff performance. In: Proceedings of the IEEE 70th Vehicular Technology Conference (VTC-Fall), pp. 1–4 (2009). doi:  10.1109/VETECF.2009.5378861
  24. 24.
    Lima, F.R.M.: Maximizing spectral efficiency under minimum satisfaction constraints on multiservice wireless networks. Ph.D. thesis, Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, Brazil (2012)Google Scholar
  25. 25.
    Lima, F.R.M., Maciel, T.F., Freitas, W.C., Cavalcanti, F.R.P.: Resource assignment for rate maximization with QoS guarantees in multiservice wireless systems. IEEE Trans. Veh. Technol. 61(3), 1318–1332 (2012). doi: 10.1109/TVT.2012.2183905 CrossRefGoogle Scholar
  26. 26.
    Liu, X., Chong, E., Shroff, N.: Opportunistic transmission scheduling with resource-sharing constraints in wireless networks. IEEE J. Sel. Areas Commun. 19(10), 2053–2064 (2001)CrossRefGoogle Scholar
  27. 27.
    Mehlführer, C., Wrulich, M., Ikuno, J.C., Bosanska, D., Rupp, M.: Simulating the long term evolution physical layer. In: EUSIPCO, Glasgow, Scotland (2009)Google Scholar
  28. 28.
    Mo, J., Walrand, J.: Fair end-to-end window-based congestion control. IEEE/ACM Trans. Networking 8(5), 556–567 (2000). doi: 10.1109/90.879343 CrossRefGoogle Scholar
  29. 29.
    Nemhauser, G., Wosley, L.: Integer and Combinatorial Optimization. Wiley, New York (1999)MATHGoogle Scholar
  30. 30.
    Palomar, D.P., Fonollosa, J.R.: Practical algorithms for a family of waterfilling solutions. IEEE Trans. Signal Process. 53(2), 686–695 (2005)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Pong, D., Moors, T.: Fairness and capacity trade-off in IEEE 802.11 WLANs. In: Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, pp. 310–317 (2004). doi:  10.1109/LCN.2004.58
  32. 32.
    Rhee, W., Cioffi, J.M.: Increase in capacity of multiuser OFDM system using dynamic subchannel allocation. In: Proceedings of the IEEE 51st Vehicular Technology Conference (VTC), vol. 2, pp. 1085–1089. Spring (2000)Google Scholar
  33. 33.
    Rodrigues, E.B.: Adaptive radio resource management for OFDMA-based macro- and femtocell networks. Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona, Spain (2011)Google Scholar
  34. 34.
    Rodrigues, E.B., Casadevall, F.: Control of the trade-off between resource efficiency and user fairness in wireless networks using utility-based adaptive resource allocation. IEEE Commun. Mag. 49(9), 90–98 (2011)CrossRefGoogle Scholar
  35. 35.
    Rodrigues, E.B., Casadevall, F.: Rate adaptive resource allocation with fairness control for OFDMA networks. In: Proceedings of the 18th European Wireless Conference, pp. 1–8 (2012)Google Scholar
  36. 36.
    Sang, A., Wang, X., Madihian, M., Gitlin, R.D.: A flexible downlink scheduling scheme in cellular packet data systems. IEEE Trans. Wireless Commun. 5(3), 568–577 (2006). doi: 10.1109/TWC.2006.1611087 CrossRefGoogle Scholar
  37. 37.
    Shakkottai, S., Srikant, R.: Network optimization and control. Found. Trends Networking 2(3), 271–379 (2007)CrossRefMATHGoogle Scholar
  38. 38.
    Shen, Z., Andrews, J.G., Evans, B.L.: Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints. IEEE Trans. Wireless Commun. 4(6), 2726–2737 (2005)CrossRefGoogle Scholar
  39. 39.
    Shi, J., Hu, A.: Maximum utility-based resource allocation algorithm in the IEEE 802.16 OFDMA system. In: Proceedings of the IEEE International Conference on Communications (ICC), pp. 311–316 (2008). doi:  10.1109/ICC.2008.65
  40. 40.
    Song, G., Li, Y.G.: Cross-layer optimization for OFDM wireless networks, part I: theoretical framework. IEEE Trans. Wireless Commun. 4(2), 614–624 (2005)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Song, G., Li, Y.G.: Cross-layer optimization for OFDM wireless networks, part II: algorithm development. IEEE Trans. Wireless Commun. 4(2), 625–634 (2005)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Uchida, M., Kurose, J.: An information-theoretic characterization of weighted alpha-proportional fairness. In: Proceedings of the IEEE 28th Conference on Computer Communications (INFOCOM), pp. 1053–1061 (2009). doi:  10.1109/INFCOM.2009.5062017
  43. 43.
    Viswanath, P., Tse, D.N.C., Laroia, R.: Opportunistic beamforming using dumb antennas. IEEE Trans. Inf. Theory 48(6), 1277–1294 (2002). doi: 10.1109/TIT.2002.1003822 CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Wong, C.Y., Cheng, R.S., Lataief, K.B., Murch, R.D.: Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE J. Sel. Areas Commun. 17(10), 1747–1758 (1999)CrossRefGoogle Scholar
  45. 45.
    Wong, I.C., Shen, Z., Evans, B.L., Andrews, J.G.: A low complexity algorithm for proportional resource allocation in OFDMA systems. In: Proceedings of the IEEE Workshop on Signal Processing Systems, pp. 1–6 (2004)Google Scholar
  46. 46.
    Yang, L., Kang, M., Alouini, M.S.: On the capacity-fairness tradeoff in multiuser diversity systems. IEEE Trans. Veh. Technol. 56(4), 1901–1907 (2007). doi: 10.1109/TVT.2007.897229 CrossRefGoogle Scholar
  47. 47.
    Zhang, Y.J., Letaief, K.B.: Multiuser adaptive subcarrier-and-bit allocation with adaptive cell selection for OFDM systems. IEEE Trans. Wireless Commun. 3(5), 1566–1575 (2004). doi: 10.1109/TWC.2004.833501 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Emanuel B. Rodrigues
    • 1
  • Francisco R. M. Lima
    • 1
  • Ferran Casadevall
    • 2
  • Francisco Rodrigo Porto Cavalcanti
    • 1
  1. 1.Wireless Telecommunications Research Group (GTEL)Federal University of CearáFortalezaBrazil
  2. 2.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations