Skip to main content
  • 3740 Accesses

Abstract

Phase change materials are a unique class of materials with properties that make them useful for data storage. A first description of their memory switching capabilities was published [1] and variations of phase change memory cell designs were patented [2] by Ovshisky in the 1960s. Early phase change materials based on the Te–As–Si-Ge system, however, switched too slowly for a viable memory technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ovshinsky SR (1968) Reversible electrical switching phenomena in disordered structures. Phys Rev Lett 22:1450–1453

    Article  Google Scholar 

  2. Ovshinsky SR (1966) Symmetrical current controlling device. US Patent 3,271,591

    Google Scholar 

  3. Yamada N, Ohno E, Akahira N, Nishiuchi K, Nagata K, Takao M (1987) High speed overwritable phase change optical disk material. Jpn J Appl Phys 26(Suppl 26–4):61–66

    Google Scholar 

  4. Yamada N (2009) Development of materials for third generation optical storage media. In: Raoux S, Wuttig M (eds) Phase change materials: science and applications. Springer, New York

    Google Scholar 

  5. Shi L (2009) Optical memory: from 1st to 3rd generation and its future. In: Raoux S, Wuttig M (eds) Phase change materials: science and applications. Springer, New York

    Google Scholar 

  6. Wuttig M, Yamada N (2007) Phase-change materials for rewriteable data storage. Nat Mater 6:824–832

    Article  CAS  Google Scholar 

  7. Meinders ER, Mijiritskii AV, van Pieterson L, Wuttig M (2006) Optical data storage—phase-change media and recording. Springer, Eindhoven

    Google Scholar 

  8. http://www.samsung.com/us/aboutsamsung/news/newsIrRead.do?news_ctgry=irnewsrelease&page=1&news_seq=18828&rdoPeriod=All&from_dt=&search_keyword=

  9. Pellizzer F, Benvenuti A, Gleixner B, Kim Y, Johnson B, Magistretti M, Marangon M, Pirovano A, Bez R, Atwood G (2006) A 90 nm phase change memory technology for stand-alone non-volatile memory applications. In: Symposium on VLSI Technology, pp 122–123

    Google Scholar 

  10. Kang S, Cho WY, Cho BH, Lee KJ, Lee CS, Oh HR, Choi BG, Wang Q, Kim HJ, Park MH, Ro YH, Kim S, Ha CD, Kim KS, Kim YR, Kim DE, Kwak CK, Byun HG, Jeong G, Jeong H, Kim K, Shin Y (2007) A 0.1 μm 1.8 V 256-Mb phase change random access memory (PRAM) with 66 MHz synchronous burst-read operation. IEEE J Solid-State Circuits 42:210–218

    Article  Google Scholar 

  11. Oh JH, Park JH, Lim YS, Lim HS, Oh YT, Kim JS, Shin JM, Park JH, Song YJ, Ryoo KC, Lim DW, Park SS, Kim JI, Kim JH, Yu J, Yeung F, Jeong CW, Kong JH, Kang DH, Koh GH, Jeong GT, Jeong HS, Kim K (2006) Full integration of highly manufacturable 512 Mb PRAM based on 90 nm technology. In: IEDM technical digest, p 2.6

    Google Scholar 

  12. Ielmini D (2008) Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys Rev B 78:035308

    Article  Google Scholar 

  13. Krebs D, Raoux S, Rettner CT, Burr GW, Salinga M, Wuttig M (2009) Threshold field of phase change memory materials measured using phase change bridge devices. Appl Phys Lett 95:082101

    Article  Google Scholar 

  14. Lankhorst MHR, Ketelaars BWSMM, Wolters RAM (2005) Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat Mater 4:347–352

    Google Scholar 

  15. Attenborough K, Hurkx GAM, Delhougne R, Perez J, Wang MT, Ong TC, Tran L, Roy D, Gravesteijn DJ, van Duuren MJ (2011) Phase change memory line concept for embedded memory applications. In: International Electron Devices Meeting

    Google Scholar 

  16. Chen YC, Rettner CT, Raoux S, Burr GW, Chen SH, Shelby RM, Salinga M, Risk WP, Happ TD, McCleland GM, Breitwisch M, Schrott A, Philipp JB, Lee MH, Cheek R, Nirschl T, Lamorey M, Chen CF, Joseph E, Zaidi S, Yee B, Lung HL, Bergmann R, Lam C (2006) Ultra-thin phase-change bridge memory device using GeSb. In: IEDM technical digest, pp 777–780

    Google Scholar 

  17. Raoux S, Cabral C Jr, Krusin-Elbaum L, Jordan-Sweet JL, Virwani K, Hitzbleck M, Salinga M, Madan A, Pinto TL (2009) Phase transitions in Ge-Sb phase change materials. J Appl Phys 105:064918

    Article  Google Scholar 

  18. Krusin-Elbaum L, Shakhvorostov D, Cabral C, Raoux S, Jordan-Sweet JL (2010) Irreversible altering of crystalline phase of phase-change Ge–Sb thin films. Appl Phys Lett 96:121906

    Article  Google Scholar 

  19. Yamada N, Kojima R, Uno M, Akiyama T, Kitaura H, Narumi K, Nishiuchi K (2002) Phase-change material for use in rewritable dual-layer optical disk. In: Proceedings of SPIE vol 4342, pp 55–63

    Google Scholar 

  20. Krbal M, Matsunaga T, Kolobov AV, Fons P, Kohara S, Honma T, Simpson RE, Tominaga J, Yamada N (2010) Local structure of amorphous Ge8Sb2Te11. In: Proceedings of the European symposium on phase change and ovonic science, Milano, Italy

    Google Scholar 

  21. Bruns G, Merkelbach P, Schlockermann C, Salinga M, Wuttig M, Happ TD, Philipp JB, Kund M (2009) Nanosecond switching in GeTe phase change memory cells. Appl Phys Lett 95:043108

    Article  Google Scholar 

  22. Fallica R, Varesi E, Fumagalli L, Grasso S, Erbetta D, Spadoni S, Longo M, Wiemer C, Fanciulli M (2010) Thermal and electrical conductivity of amorphous and crystalline GeTe-N compounds. In: Proceedings of the European symposium on phase change and ovonic science, Milano, Italy

    Google Scholar 

  23. Fantini A, Sousa V, Perniola L, Gourvest E, Bastien JC, Maitrejean S, Braga S, Pashkov N, Bastard A, Hyot B, Roule A, Persico A, Feldis H, Jahan C, Nodin JF, Blachier D, Toffoli A, Reimbold G, Fillot F, Pierre F, Annunziata R, Benshael D, Mazoyer P, Vallée C, Billon T, Hazart J, De Salvo B, Boulanger F (2011) N-doped GeTe as performance booster for embedded phase-change memories. In: International electron devices meeting

    Google Scholar 

  24. Shelby RM, Raoux S (2009) Crystallization dynamics of nitrogen-doped Ge2Sb2Te5. J Appl Phys 105:104902

    Article  Google Scholar 

  25. Chen YC, Che CT, Yu JY, Lee CY, Chen CF, Lung SL, Liu R (2003) 180 nm Sn-doped Ge2Sb2Te5 chalcogenide phase-change memory device for low power, high speed embedded memory for SoC applications. In: Proceedings of custom integrated circuits conference (CICC), pp 395–398

    Google Scholar 

  26. Matsuzaki N, Kurotsuchi K, Matsui Y, Tonomura O, Yamamoto N, Fujisaki Y, Kitai N, Takemura R, Osaka K, Hanzawa S, Moriya H, Iwasaki T, Kawahara T, Takaura N, Terao M, Matsuoka M, Moniwa M (2005) Oxygen-doped GeSbTe phase-change memory cells featuring 1.5 V/100 μA standard 0.13-μm CMOS operations. In: IEDM technical digest, pp 757–780

    Google Scholar 

  27. Czubatyj W, Lowrey T, Kostylev S, Asano I (2006) Current reduction in ovonic memory devices. In: Proceedings of the European symposium on phase change and ovonic science, Grenoble, France

    Google Scholar 

  28. Hwang YN, Lee SH, Ahn SJ, Lee SY, Ryoo KC, Hong HS, Koo HC, Yeung F, Oh JH, Kim HJ, Jeong WC, Park JH, Horii H, Ha YH, Yi JH, Koh GH, Jeong HS, Kim K (2003) Writing current reduction for high-density phase-change RAM In: IEDM technical digest, pp 893–896

    Google Scholar 

  29. Breitwisch M (2009) Phase change random access memory integration. In: Raoux S, Wuttig M (eds) Phase change materials: Science and applications. Springer, New York

    Google Scholar 

  30. Shportko K, Kremers S, Woda M, Lencer D, Robertson J, Wuttig M (2008) Resonant bonding in crystalline phase-change materials. Nat Mater 7:653–658

    Article  CAS  Google Scholar 

  31. Wuttig M, Lüsebrink D, Wamwangi D, Welnic W, Gillessen M, Dronskowski R (2007) The role of vacancies and local distortions in the design of new phase-change materials. Nat Mater 6:122–128

    Article  CAS  Google Scholar 

  32. Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M (2008) A map for phase-change materials. Nat Mater 7:972–977

    Article  CAS  Google Scholar 

  33. Lencer D, Salinga M, Wuttig M (2010) Design rules for phase-change materials in storage applications. Adv Mater 2011:23

    Google Scholar 

  34. Matsunaga T, Yamada N, Kubota Y (2004) Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe-Sb2Te3 pseudobinary systems. Acta Cryst B60:685–691

    Article  CAS  Google Scholar 

  35. Karpinsky O, Shelimova L, Kretova M, Fleurial J (1998) An X-ray study of the mixed-layered compounds of (GeTe)n(Sb2Te3)m homologous series. J Alloys Compd 268:112–117

    Article  CAS  Google Scholar 

  36. Chattopadhyay T, Boucherle J, Vonschnering H (1987) Neutron-diffraction study on the structural phase-transition in GeTe. J Phys C 20:1431–1440

    Article  CAS  Google Scholar 

  37. Raoux S, Munoz B, Cheng H-Y, Jordan-Sweet JL (2009) Phase transitions in Ge–Te phase change materials studied by time-resolved X-ray diffraction. Appl Phys Lett 95:143118

    Article  Google Scholar 

  38. Lee B-S, Abelson JR, Bishop SG, Kang D-H, Cheong B, Kim K-B (2005) Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases. J Appl Phys 97:093509

    Article  Google Scholar 

  39. Siegrist T, Jost P, Volker H, Woda M, Merkelbach P, Schlockermann C, Wuttig M (2011) Disorder-induced localization in crystalline phase change materials. Nat Mater 10:202

    Article  CAS  Google Scholar 

  40. Raoux S, Jordan-Sweet JL, Kellock AJ (2008) Crystallization properties of ultra-thin phase change films. J Appl Phys 103:114310

    Article  Google Scholar 

  41. Simpson RE, Krbal M, Fons P, Kolobov AV, Tominaga J, Uruga T, Tanida H (2010) Toward the ultimate limit of phase change in Ge2Sb2Te5. Nano Lett 10:414

    Article  CAS  Google Scholar 

  42. Lee S-H, Jung Y, Agarwal R (2007) Highly scalable non-volatile and ultra-low power phase-change nanowires memory. Nat Nanotechnol 2:626

    Article  CAS  Google Scholar 

  43. Caldwell MA, Raoux S, Wang RY, Wong H-SP, Milliron DJ (2010) Synthesis and size-dependent crystallization of colloidal germanium telluride nanoparticles. J Mater Chem 20:1285

    Article  CAS  Google Scholar 

  44. Xiong F, Liao AD, Estrada D, Pop E (2011) Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332:568

    Article  CAS  Google Scholar 

  45. Raoux S, Cheng Y–Y, Jordan-Sweet J, Munoz B, Hitzbleck M (2009) Influence of interfaces and doping on the crystallization temperature of Ge–Sb. Appl Phys Lett 94:183114

    Article  Google Scholar 

  46. Wong HSP, Raoux S, Kim S, Liang J, Reifenberg JP, Rajendran B, Asheghi M, Goodson KE (2010) Phase change memory. In: Proceedings of IEEE vol 98, p 2201

    Google Scholar 

  47. Pirovano A, Lacaita AL, Benvenuti A, Pellizzer F, Hudgens S, Bez R (2003) Scaling analysis of phase-change memory technology. In: Electron devices meeting 2003, IEDM ‘03 technical digest. IEEE international, pp 29.6.1–29.6.4

    Google Scholar 

  48. Sasago Y, Kinoshita M, Morikawa T, Kurotsuchi K, Hanzawa S, Mine T, Shima A, Fujisaki Y, Kume H, Moriya H, Takaura N, Torii K (2006) Cross-point phase change memory with 4F2 cell size driven by low-contact-resistivity poly-Si diode. In: Proceedings of very large scale integration (VLSI) technology Symposium, pp 24–25

    Google Scholar 

  49. Pellizzer F, Benvenuti A, Gleixner B, Kim Y, Johnson B, Magistretti M, Marangon T, Pirovano A, Bez R, Atwood G (2006) A 90 nm phase change memory technology for stand-alone non-volatile memory applications. In: Proceedings of very large scale integration (VLSI) technology symposium, pp 122–123

    Google Scholar 

  50. Raoux S, Burr GW, Breitwisch MJ, Rettner CT, Chen YC, Shelby RM, Salinga M, Krebs D, Chen SH, Lung H-L, Lam C (2008) Phase-change random access memory: a scalable technology. IBM J Res Dev 52:465–479

    Article  CAS  Google Scholar 

  51. Pellizzer F, Pirovano A, Ottogalli F, Magistretti M, Scaravaggi M, Zuliani P, Tosi M, Benvenuti A, Besana P, Cadeo S, Marangon T, Morandi R, Piva R, Spandre A, Zonca R, Modelli A, Varesi E, Lowrey T, Lacaita A, Casagrande G, Cappelletti P, Bez R, Novel μ-trench phase-change memory cell for embedded and stand-alone non-volatile memory applications. In: Proceedings of very large scale integration (VLSI) technology symposium, pp 18–19

    Google Scholar 

  52. Lacaita AL (2006) Phase change memories: state-of-the-art, challenges and perspectives. Solid State Electron 50:24–31

    Article  CAS  Google Scholar 

  53. Oh GH, Park YL, Lee JI, Im DH, Bae JS, Kim DH, Ahn DH, Horii H, Park SO, Yoon HS, Park IS, Ko YS, Chung UI, Moon JT (2009) Parallel multi-confined (PMC) cell technology for high density MLC PRAM In: Proceedings of very large scale integration (VLSI) technology symposium, pp 220–221

    Google Scholar 

  54. Giraud V, Cluzel J, Sousa V, Jacquot A, Dauscher A, Lenoir B, Scherrer H, Romer S (2005) Thermal characterization and analysis of phase change random access memory. J Appl Phys 98:013520

    Article  Google Scholar 

  55. Servalli G (2009) 45 nm generation phase change memory technology. In: Proceedings of IEEE international electron devices meeting

    Google Scholar 

  56. Breitwisch M, Nirschl T, Chen CF, Zhu Y, Lee MH, Lamorey M, Burr GW, Joseph E, Schrott A, Philipp JB, Cheek R, Happ TD, Chen SH, Zaidr S, Flaitz P, Bruley J, Dasaka R, Rajendran B, Rossnagel S, Yang M, Chen YC, Bergmann R, Lung HL, Lam C (2007) Novel lithography-independent pore phase change memory. In: Proceedings of very large scale integration (VLSI) technology symposium, pp 100–101

    Google Scholar 

  57. Chen WS, Lee C, Chao DS, Chen YC, Chen F, Chen CW, Yen R, Chen MJ, Wang WH, Hsiao TC, Yeh JT, Chiou SH, Liu MY, Wang TC, Chein LL, Huang C, Shih NT, Tu LS, Huang D, Yu TH, Kao MJ, Tsai MJ (2007) A Novel cross-spacer phase change memory with ultra-small lithography independent contact area. In: Proceedings of IEEE international electron devices meeting, pp 319–322

    Google Scholar 

  58. Ha YH, Yi JH, Horii H, Park JH, Joo SH, Park SO, Chung U In, Moon JT (2003) An edge contact type cell for phase change RAM featuring very low power consumption. In: Proceedings of Very Large Scale Integration (VLSI) Technology Symposium, pp 175–176

    Google Scholar 

  59. Oh JH, Park JH, Lim YS, Lim HS, Oh YT, Kim JS, Shin J, Park JH, Song YJ, Ryoo KC, Lim DW, Park SS, Kim JI, Kim JH, Yu J, Yeung F, Jeong CW, Kong JH, Kang DH, Koh GH, Jeong GT, Jeong HS, Kim K (2006) Full integration of highly manufacturable 512 Mb PRAM based on 90 nm technology. In: Proceedings of IEEE international electron devices meeting

    Google Scholar 

  60. Ahn SJ, Hwang YN, Song YJ, Lee SH, Lee SY, Park JH, Jeong CW, Ryoo KC, Shin JM, Fai Y, Oh JH, Koh GH, Jeong GT, Joo SH, Choi SH, Son YH, Shin JC, Kim YT, Jeong HS, Kim K (2005) Highly reliable 50 nm contact cell technology for 256 Mb PRAM. In: Proceedings of very large scale integration (VLSI) technology symposium, pp 98–99

    Google Scholar 

  61. Song YJ, Ryoo KC, Hwang YN, Jeong CW, Lim DW, Park SS, Kim JI, Kim JH, Lee SY, Kong JH, Ahn SJ, Lee SH, Park JH, Oh JH, Oh YT, Kim JS, Shin JM, Fai Y, Koh GH, Jeong GT, Kim RH, Lim HS, Park IS, Jeong HS, Kim K (2006) Highly reliable 256 Mb PRAM with advanced ring contact technology and novel encapsulating technology. In: Proceedings of very large scale integration (VLSI) technology symposium, pp 118–119

    Google Scholar 

  62. Hwang YN, Lee SH, Ahn SJ, Lee SY, Ryoo KC, Hong HS, Koo HC, Yeung F, Oh JH, Kim HJ, Jeong WC, Park JH, Horii H, Ha YH, Yi JH, Koh GH, Jeong GT, Jeong HS, Kim K. Writing current reduction for high-density phase-change RAM. In: Proceedings of very large scale integration (VLSI) technology symposium, pp 37.1.1–37.1.4

    Google Scholar 

  63. Lee JI, Park H, Cho SL, Park YL, Bae BJ, Park JH, Park JS, An HG, Bae JS, Ahn DH, Kim YT, Horii H, Song SA, Shin JC, Park SO, Kim HS, Chung U-I, Moon JT, Ryu BI (2007) Highly scalable phase change memory with CVD GeSbTe for sub 50 nm generation. In: Proceedings of very large scale integration (VLSI) technology symposium, pp 1002–1003

    Google Scholar 

  64. Im DH, Lee JI, Cho SL, An HG, Kim DH, Kim IS, Park H, Ahn DH, Horii H, Park OS, Chung U-I, Moon JT (2008) A unified 7.5 nm dash-type confined cell for high performance PRAM device. In: Proceedings of very large scale integration (VLSI) technology symposium

    Google Scholar 

  65. Chen Y-C (2009) Phase change random access memory advanced prototype devices and scaling. In: Raoux S, Wuttig M (eds) Phase change materials: science and applications. Springer, New York

    Google Scholar 

  66. Bez R, Gleixner RJ, Pellizzer F, Pirovano A, Atwood G (2009) Phase change memory cell concepts and designs. In: Raoux S, Wuttig M (eds) Phase change materials: science and applications. Springer, New York

    Google Scholar 

  67. Milliron DJ, Huang Q, Zhu Y (2009) Novel deposition methods. In: Raoux S, Wuttig M (eds) Phase change materials: science and applications. Springer, New York

    Google Scholar 

  68. Huang Q, Kellock AJ, Raoux S (2008) Electrodeposition of SbTe phase-change alloys. J Electrochem Soc 155:D104

    Article  CAS  Google Scholar 

  69. Milliron DJ, Raoux S, Shelby RM, Jordan-Sweet J (2007) Solution-phase deposition and nanopatterning of GeSbSe phase change materials. Nat Mater 6:352

    Article  CAS  Google Scholar 

  70. Ritala M, Pore V, Hatanpää T, Heikkilä M, Leskelä M, Mizohata K, Schrott A, Raoux S, Rossnagel SM (1946) Atomic layer deposition of Ge2Sb2Te5 thin films. Microelectron Eng 2009:86

    Google Scholar 

  71. Ritala M, Leskelä M (2001) Atomic layer deposition. In: Nalwa HS (ed) Handbook of thin film materials ,vol 1. Academic Press, San Diego, pp 103–159

    Google Scholar 

  72. Ritala M, Niinistö J (2008) Atomic layer deposition. In: Jones AC, Hitchman MJ (eds) Chemical vapour deposition: precursors, processes and applications. Royal Society of Chemistry, Cambridge, pp 158–206

    Chapter  Google Scholar 

  73. Leskelä M, Pore V, Hatanpää T, Heikkilä M, Ritala M, Schrott A, Raoux S, Rossnagel SM (2009) Atomic layer deposition of materials for phase-change memories. ECS Trans 25(4):399–407

    Google Scholar 

  74. Lee J, Choi S, Lee C, Kang Y, Kim D (2007) GeSbTe deposition for the PRAM applications. Appl Surf Sci 253:3969–3976

    Article  CAS  Google Scholar 

  75. Choi BJ, Choi S, Shin YC, Hwang CS, Lee JW, Jeong J, Kim YJ, Hwang S-Y, Hong SK (2007) Cyclic PECVD of Ge2Sb2Te5 thin films using metalorganic sources. J Electrochem Soc 154:H318–H324

    Article  CAS  Google Scholar 

  76. Choi BJ, Choi S, Shin YC, Kim KM, Hwang CS, Kim YJ, Son YJ, Hong SK (2007) Combined atomic layer and chemical vapour deposition, and selective growth of Ge2Sb2Te5 films on TiN/W contact plug. Chem Mater 19:4387–4389

    Article  CAS  Google Scholar 

  77. Choi BJ, Choi S, Eom T, Ryu SW, Cho D-Y, Heo J, Kim HJ, Hwang CS, Kim YJ, Hong SK (2009) Influence of substrates on the nucleation and growth behaviours of Ge2Sb2Te5 films by combined plasma-enhanced atomic layer and chemical vapour deposition. Chem Mater 21:2386–2396

    Article  CAS  Google Scholar 

  78. Choi BJ, Oh SH, Choi S, Eom T, Shin YC, Kim KM, Yi K-W, Hwang CS, Kim YJ, Park HC, Baek TS, Hong SK (2009) Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films. J Electrochem Soc 156:H59–H63

    Article  CAS  Google Scholar 

  79. Choi S, Choi BJ, Eom T, Jang JH, Lee W, Hwang CS (2010) Growth and phase separation behaviour in Ge-doped Sb-Te thin film films deposited by combined plasma-enhanced chemical vapour and atomic layer deposition. J Phys Chem C 114:17899–17904

    Article  CAS  Google Scholar 

  80. Eom T, Choi BJ, Choi S, Park TJ, Kim TJ, Seo M, Rha SH, Hwang CS (2009) Ge2Sb2Te5 charge trapping nanoislands with high-k blocking oxides for charge trap memory. Electrochem Solid-State Lett 12:H378–H380

    Article  CAS  Google Scholar 

  81. Pore V, Hatanpää T, Ritala M, Leskelä M (2009) Atomic layer deposition of metal tellurides and selenides using alkylsilyl compounds of tellurium and selenium. J Am Chem Soc 131:3478–3480

    Article  CAS  Google Scholar 

  82. Knapas K, Hatanpää T, Ritala M, Leskelä M (2010) In situ reaction mechanism studies on atomic layer deposition of Sb2Te3 and GeTe from (Et3Si)2Te and chlorides. Chem Mater 22:1386–1391

    Article  CAS  Google Scholar 

  83. Sarnet T, Pore V, Hatanpää T, Ritala M, Leskelä M, Schrott A, Zhu Y, Raoux S, Cheng H-Y (2011) Atomic layer deposition and characterization of GeTe thin films. J Electrochem Soc 158:D694–D697

    Article  CAS  Google Scholar 

  84. Pore V, Knapas K, Hatanpää T, Sarnet T, Kemell M, Ritala M, Leskelä M, Mizohata K (2011) Atomic layer deposition of antimony and its compounds using dechlorosilylation reactions of tris(triethylsilyl)antimony. Chem Mater 23:247–254

    Article  CAS  Google Scholar 

  85. Maitrejean S, Lhostis S, Haukka S, Jahan C, Gourvest E, Matero R, Blomberg T, Toffoli A, Persico A, Jayet C, Veillerot M, Barnes JP, Pierre F, Fillot F, Perniola L, Sousa V, Sprey H, Boulanger F, de Salvo B, Billon T (2011) Demonstration of phase change memories devices using Ge2Sb2Te5 films deposited by atomic layer deposition. In: 2011 IEEE international interconnect technology conference and 2011 materials for advanced metallization (IITC/MAM), Dresden, doi:10.1109/IITC.2011.5940298

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Raoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raoux, S., Ritala, M. (2014). PCRAM. In: Hwang, C. (eds) Atomic Layer Deposition for Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8054-9_5

Download citation

Publish with us

Policies and ethics