ALD Simulations

Chapter

Abstract

Published papers on the simulation of the atomic layer deposition (ALD) process are reviewed. The main topic is reaction mechanism at the atomic scale, considering the elementary steps of precursor adsorption, ligand elimination, and film densification, as well as reactions with substrates (particularly Si and SiO2) and CVD-like decomposition reactions. Density functional theory (DFT) is the first principles method generally applied to these mechanistic questions. Analytical and stochastic models for growth rate and growth mode are also presented, some of which incorporate atomic scale data. Multiscale simulations of gas flow are used to investigate conformality in high aspect ratio features and uniformity of growth within a reactor. The most popular subject for modeling is the ALD of oxides and nitrides, particularly the high-k dielectrics HfO2, ZrO2, and Al2O3, due to their importance in semiconductor processing.

Keywords

Entropy SiO2 Sulfide Zirconia Carbide 

Notes

Acknowledgments

Financial support from Science Foundation Ireland under “ALDesign”, 09.IN1.I2628, is gratefully acknowledged.

References

  1. 1.
    Jonsson H (2000) Annu Rev Phys Chem 51:623Google Scholar
  2. 2.
    Sautet P, Delbecq F (2010) Chem Rev 110:1788Google Scholar
  3. 3.
    Elliott SD (2007) In Fanciulli MSG (ed) Rare earth oxide thin films: growth, characterization, and applications, Springer-Verlag, Berlin. Platz 3, D-14197 BerlinGoogle Scholar
  4. 4.
  5. 5.
    Shankar S, Simka H, Haverty M (2008) J Phys: Condens Matter 20:064232Google Scholar
  6. 6.
    Hafner J (2000) Acta Mater 48:71Google Scholar
  7. 7.
    Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974Google Scholar
  8. 8.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157Google Scholar
  9. 9.
    Kwon J, Dai M, Halls MD, Langereis E, Chabal YJ, Gordon RG (2009) J Phys Chem C 113:654Google Scholar
  10. 10.
    Rodriguez-Reyes JCF, Teplyakov AV (2007) J Phys Chem C 111:16498Google Scholar
  11. 11.
    Kang JK, Musgrave CB (2002) J Appl Phys 91:3408Google Scholar
  12. 12.
    Siodmiak M, Frenking G, Korkin A (2000) J Phys Chem A 104:1186Google Scholar
  13. 13.
    Li K, Li S, Li N, Dixon DA, Klein TM (2010) J Phys Chem C 114:14061Google Scholar
  14. 14.
    Heyman A, Musgrave CB (2004) J Phys Chem B 108:5718Google Scholar
  15. 15.
    Widjaja Y, Musgrave CB (2002) Appl Phys Lett 80:3304Google Scholar
  16. 16.
    Widjaja Y, Musgrave CB (1931) J Chem Phys 2002:117Google Scholar
  17. 17.
    Mukhopadhyay AB, Musgrave CB, Sanz JF (2008) J Am Chem Soc 130:11996Google Scholar
  18. 18.
    Widjaja Y, Han JH, Musgrave CB (2003) J Phys Chem B 107:9319Google Scholar
  19. 19.
    Mukhopadhyay A, Musgrave C (2006) Chem Phys Lett 421:215Google Scholar
  20. 20.
    Deminsky M (2004) Surf Sci 549:67Google Scholar
  21. 21.
    Mukhopadhyay AB, Sanz JF, Musgrave CB (2006) Chem Mater 18:3397Google Scholar
  22. 22.
    Elliott SD, Greer JC (2004) J Mater Chem 14:3246Google Scholar
  23. 23.
    Elliott SD, Scarel G, Wiemer C, Fanciulli M, Pavia G (2006) Chem Mater 18:3764Google Scholar
  24. 24.
    Kwon J, Dai M, Halls MD, Chabal YJ (2008) Chem Mater 20:3248Google Scholar
  25. 25.
    Nolan M, Elliott SD (2010) Chem Mater 22:117Google Scholar
  26. 26.
    Tanskanen JT, Bakke JR, Bent SF, Pakkanen TA (2010) J Phys Chem C 114:16618Google Scholar
  27. 27.
    Elliott SD (2005) Comput Mater Sci 33:20Google Scholar
  28. 28.
    Elliott SD (2007) Surf Coat Technol 201:9076Google Scholar
  29. 29.
    Xie Q, Jiang Y-L, Detavernier C, Deduytsche D, Van Meirhaeghe RL, Ru G-P, Li B-Z, Qu X-P (2007) J Appl Phys 102:083521Google Scholar
  30. 30.
    Elam JW, Pellin MJ, Elliott SD, Zydor A, Faia MC, Hupp JT (2007) Appl Phys Lett 91:253123Google Scholar
  31. 31.
    Ren J, Cui C, Zhou G, Liu Y, Hu Y, Wang B (2011) Thin Solid Films 519:3716Google Scholar
  32. 32.
    Olivier S, Ducéré J-M, Mastail C, Landa G, Estève A, Rouhani MD (2008) Chem Mater 20:1555Google Scholar
  33. 33.
    Tanaka T (2002) Thin Solid Films 409:51Google Scholar
  34. 34.
    Xu Y, Musgrave C (2005) Chem Phys Lett 407:272Google Scholar
  35. 35.
    Rodríguez-Reyes JCF, Teplyakov AV (2008) J Appl Phys 104:084907Google Scholar
  36. 36.
    Somani S, Mukhopadhyay A, Musgrave C (2011) J Phys Chem C 115:11507Google Scholar
  37. 37.
    Blanquet E, Nuta I, Brizé V, Boichot Rl, Mantoux A, Violet P, Daniele S (2010) ECS Trans 33(2):321 Google Scholar
  38. 38.
    Mui C (2004) Surf Sci 557:159Google Scholar
  39. 39.
    Arvidsson I, Larsson K (2007) Diam Relat Mater 16:131Google Scholar
  40. 40.
    Hirva P, Pakkanen T (1989) Surf Sci 220:137Google Scholar
  41. 41.
    Mochizuki Y, Takada T, Usui A (1994) Appl Surf Sci 82–83:200Google Scholar
  42. 42.
    Hukka T(1996) Surface Science 359, 213Google Scholar
  43. 43.
    Mårtensson P (1998) Appl Surf Sci 136:137Google Scholar
  44. 44.
    Mårtensson P (1999) Appl Surf Sci 148:9Google Scholar
  45. 45.
    Mårtensson P (2000) Appl Surf Sci 157:92Google Scholar
  46. 46.
    Orimoto Y, Toyota A, Furuya T, Nakamura H, Uehara M (2009) Ind Eng Chem Res 48:3389Google Scholar
  47. 47.
    Xie Q, Deduytsche D, Musschoot J, Meirhaeghe RLV, Detavernier C, Ding S-F, Qu X-P (2011) Microelectron Eng 88:646Google Scholar
  48. 48.
    Han B, Wu J, Zhou C, Li J, Lei X, Norman JAT, Gaffney TR, Gordon R, Roberts DA, Cheng H (2008) J Phys Chem C 112:9798Google Scholar
  49. 49.
    Wu J, Han B, Zhou C, Lei X, Gaffney TR, Norman JAT, Li Z, Gordon R, Cheng H (2007) J Phys Chem C 111:9403Google Scholar
  50. 50.
    Machado E, Kaczmarski M, Braida B, Ordejón P, Garg D, Norman J, Cheng H (2007) J Mol Model 13:861Google Scholar
  51. 51.
    Machado E, Kaczmarski M, Ordejón P, Garg D, Norman J, Cheng H (2005) Langmuir 21:7608Google Scholar
  52. 52.
    Pirolli L, Teplyakov AV (2006) Surf Sci 600:3313Google Scholar
  53. 53.
    Dai M, Kwon J, Halls MD, Gordon RG, Chabal YJ (2010) Langmuir 26:3911Google Scholar
  54. 54.
    Asthagiri A, Sholl DS (2002) J Chem Phys 116:9914Google Scholar
  55. 55.
    Elliott SD (2010) Langmuir 26:9179Google Scholar
  56. 56.
    Puurunen RL (2005) J Appl Phys 97:121301Google Scholar
  57. 57.
    Halls MD, Raghavachari K (2004) J Phys Chem A 108:2982Google Scholar
  58. 58.
    Delabie A, Sioncke S, Rip J, Van Elshocht S, Caymax M, Pourtois G, Pierloot K (2011) J Phys Chem C 110815122459076Google Scholar
  59. 59.
    Gun’ko VM (1993) Kinet Katal 34:463Google Scholar
  60. 60.
    Brodskii V, Rykova E, Bagatur’yants A, Korkin A (2002) Comput Mater Sci 24:278Google Scholar
  61. 61.
    Petersen M (2004) Comput Mater Sci 30:77Google Scholar
  62. 62.
    Chen W, Zhang D, Ren J, Lu H, Zhang J, Xu M, Wang J, Wang L (2005) Thin Solid Films 479:73Google Scholar
  63. 63.
    Han JH, Gao G, Widjaja Y, Garfunkel E, Musgrave CB (2004) Surf Sci 550:199Google Scholar
  64. 64.
    Jeloaica L, Esteve A, Dkhissi A, Esteve D, Djafari Rouhani M (2005) Comput Mater Sci 33:59Google Scholar
  65. 65.
    Estève A (2003) Comput Mater Sci 27:75Google Scholar
  66. 66.
    Dkhissi A, Mazaleyrat G, Estève A, Rouhani MD (2009) Phys Chem Chem Phys 11:3701Google Scholar
  67. 67.
    Ren J, Zhang Y-T, Zhang DW (2007) J Mol Struct (Thoechem) 803:23Google Scholar
  68. 68.
    Ren J, Hu Y, Wang J, Jiang H, Zhang D (2008) Thin Solid Films 516:2966Google Scholar
  69. 69.
    Jeloaica L, Estève A, Djafari Rouhani M, Estève D (2003) Appl Phys Lett 83:542Google Scholar
  70. 70.
    Ren J, Zhou G, Hu Y, Jiang H, Zhang D (2008) Appl Surf Sci 254:7115Google Scholar
  71. 71.
    Lu H-L, Xu M, Ding S-J, Chen W, Zhang DW, Wang L-K (2006) Appl Phys Lett 89:162905Google Scholar
  72. 72.
    Fenno RD, Halls MD, Raghavachari K (2005) J Phys Chem B 109:4969Google Scholar
  73. 73.
    Halls MD, Raghavachari K (2003) J Chem Phys 118:10221Google Scholar
  74. 74.
    Halls M, Raghavachari K, Frank M, Chabal Y (2003) Phys Rev B 68:161302Google Scholar
  75. 75.
    Halls MD, Raghavachari K (2004) J Phys Chem B 108:4058Google Scholar
  76. 76.
    Ghosh MK, Choi CH (2006) J Phys Chem B 110:11277Google Scholar
  77. 77.
    Kim D-H, Baek S-B, Seo H-I, Kim Y-C (2011) Appl Surf Sci 257:6326Google Scholar
  78. 78.
    Lu H-L, Chen W, Ding S-J, Xu M, Zhang DW, Wang L-K (2005) J Phys: Condens Matter 17:7517Google Scholar
  79. 79.
    Clemens JB, Chagarov EA, Holland M, Droopad R, Shen J, Kummel AC (2010) J Chem Phys 133:154704Google Scholar
  80. 80.
    Hegde G, Klimeck G, Strachan A (2011) Appl Phys Lett 99:093508Google Scholar
  81. 81.
    Yu S, Qing-Qing S, Lin D, Han L, Shi-Jin D, Wei Z (2009) Chin Phys Lett 26:053101Google Scholar
  82. 82.
    Shi Y, Sun Q-Q, Dong L, Liu H, Ding S-J, Zhang W (2009) Chin Phys Lett 26:053101Google Scholar
  83. 83.
    Xu K, Ye PD (2010) J Phys Chem C 114:10505Google Scholar
  84. 84.
    Xu Y, Musgrave CB (2004) Chem Mater 16:646Google Scholar
  85. 85.
    Hu Z, Turner CH (2006) J Phys Chem B 110:8337Google Scholar
  86. 86.
    Hu Z, Turner CH (2007) J Am Chem Soc 129:3863Google Scholar
  87. 87.
    Ghosh MK, Choi CH (2008) Chem Phys Lett 461:249Google Scholar
  88. 88.
    Wasslen YA, Tois E, Haukka S, Kreisel KA, Yap GPA, Halls MD, Barry ST (1976) Inorg Chem 2010:49Google Scholar
  89. 89.
    Widjaja Y, Mysinger MM, Musgrave CB (2000) J Phys Chem B 104:2527Google Scholar
  90. 90.
    Rodriguez-Reyes JCF, Teplyakov AV (2007) J Phys Chem C 111:4800Google Scholar
  91. 91.
    Rodríguez-Reyes JCF, Teplyakov AV (2008) J Phys Chem C 112:9695Google Scholar
  92. 92.
    Haran M, Engstrom JR, Clancy P (2006) J Am Chem Soc 128:836Google Scholar
  93. 93.
    Okamoto Y (1999) J Phys Chem B 103:11074Google Scholar
  94. 94.
    Ren J (2009) Appl Surf Sci 255:5742Google Scholar
  95. 95.
    Ren J, Zhou G, Hu Y, Zhang DW (2009) Appl Surf Sci 255:7136Google Scholar
  96. 96.
    Lu H-L, Ding S-J, Zhang DW (2009) J Phys Chem A 113:8791Google Scholar
  97. 97.
    Lee W, Dasgupta NP, Trejo O, Lee J-R, Hwang J, Usui T, Prinz FB (2010) Langmuir 26:6845Google Scholar
  98. 98.
    Popovici M, Delabie A, Van Elshocht S, Clima S, Pourtois G, Nyns L, Tomida K, Menou N, Opsomer K, Swerts J, Detavernier C, Wouters D, Kittl JA (2009) J Electrochem Soc 156:G145Google Scholar
  99. 99.
    Nyns L, Delabie A, Pourtois G, Van Elshocht S, Vinckier C, De Gendt S (2010) J Electrochem Soc 157:G7Google Scholar
  100. 100.
    Mäkinen V, Honkala K, Häkkinen H (2011) J Phys Chem C 115:9250Google Scholar
  101. 101.
    Terranova U, Bowler DR (2011) J Mater Chem 21:4197Google Scholar
  102. 102.
    Miikkulainen V, Suvanto M, Pakkanen TA (2008) Chem Vap Deposition 14:71Google Scholar
  103. 103.
    Zydor A, Elliott SD (1879) J Phys Chem A 2010:114Google Scholar
  104. 104.
    Black K, Aspinall HC, Jones AC, Przybylak K, Bacsa J, Chalker PR, Taylor S, Zhao CZ, Elliott SD, Zydor A, Heys PN (2008) J Mater Chem 18:4561Google Scholar
  105. 105.
    Coyle JP, Johnson PA, DiLabio GA, Barry ST, Müller J (2010) Inorg Chem 49:2844Google Scholar
  106. 106.
    Li J, Wu J, Zhou C, Han B, Lei X, Gordon R, Cheng H (2009) Int J Quantum Chem 109:756Google Scholar
  107. 107.
    Li J-YW, Wu J-P, Zhou C-G; Yao, S-J; Han B (2008) Acta Chimica Sinica 66:165Google Scholar
  108. 108.
    Suntola T (1989) Mater Sci Rep 4:261Google Scholar
  109. 109.
    Alam MA, Green ML (2003) J Appl Phys 94:3403Google Scholar
  110. 110.
    Hémeryck A, Petrantoni M, Estève A, Rossi C, Djafari Rouhani M, Landa G, Estève D (2010) J Phys Chem Solids 71:125Google Scholar
  111. 111.
    Ylilammi M (1996) Thin Solid Films 279:124Google Scholar
  112. 112.
    Park H (2000) Appl Surf Sci 158:81Google Scholar
  113. 113.
    Elliott SD, Pinto HP (2004) J Electroceram 13:117Google Scholar
  114. 114.
    Puurunen RL (2003) Chem Vap Deposition 9:249Google Scholar
  115. 115.
    Puurunen RL (2003) Chem Vap Deposition 9:327Google Scholar
  116. 116.
    Puurunen R (2005) Appl Surf Sci 245:6Google Scholar
  117. 117.
    Nyns L, Delabie A, Caymax M, Heyns MM, Van Elshocht S, Vinckier C, De Gendt S (2008) J Electrochem Soc 155:G269Google Scholar
  118. 118.
    Alekhin AP, Lapushkin GI, Markeev AM, Sigarev AA, Toknova VF (1091) Russ J Gen Chem 2010:80Google Scholar
  119. 119.
    Kim J-H, Kim J-Y, Kang S-W (2005) J Appl Phys 97:093505Google Scholar
  120. 120.
    Lie M, Nilsen O, Fjellvåg H, Kjekshus A (2009) Dalton Trans 3:481 Google Scholar
  121. 121.
    Nilsen O, Mohn CE, Kjekshus A, Fjellvåg H (2007) J Appl Phys 102:024906Google Scholar
  122. 122.
    Nilsen O, Karlsen O, Kjekshus A, Fjellvåg H (2007) Thin Solid Films 515:4527Google Scholar
  123. 123.
    Nilsen O, Karlsen O, Kjekshus A, Fjellvåg H (2007) Thin Solid Films 515:4538Google Scholar
  124. 124.
    Wilson CA, Goldstein DN, McCormick JA, Weimer AW, George SM (2008) J Vac Sci Technol A: Vac Surf Films 26:430Google Scholar
  125. 125.
    Yim S–S, Lee D-J, Kim K-S, Kim S-H, Yoon T-S, Kim K-B (2008) J Appl Phys 103:113509Google Scholar
  126. 126.
    Martin Hoyas A, Schuhmacher J, Whelan CM, Fernandez Landaluce T, Vanhaeren D, Maex K, Celis JP (2006) J Appl Phys 100:114903Google Scholar
  127. 127.
    Puurunen RL (2004) Chem Vap Deposition 10:159Google Scholar
  128. 128.
    Ahn J-HK, Kwon S-H, Kim J-H, Kim J-Y, Kang S-W (2010) J Mater Sci Technol 26:371 Google Scholar
  129. 129.
    Battaile CC, Srolovitz DJ (2002) Annu Rev Mater Res 32:297Google Scholar
  130. 130.
    Deminsky M, Knizhnik A, Belova I, Umanskii S, Rykova E, Bagatur’yants A, Potapkin B, Stoker M, Korkin A (2004) Surf Sci 549:67Google Scholar
  131. 131.
    Mazaleyrat G, Estève A, Jeloaica L, Djafari Rouhani M (2005) Comput Mater Sci 33:74Google Scholar
  132. 132.
    Dkhissi A, Estève A, Mastail C, Olivier S, Mazaleyrat G, Jeloaica L, Djafari Rouhani M (1915) J Chem Theory Comput 2008:4Google Scholar
  133. 133.
    Neizvestny I, Shwartz N, Yanovitskaja Z, Zverev A (2006) Comput Mater Sci 36:36Google Scholar
  134. 134.
    Hua Z, Shi J, Turner CH (2009) Mol Simul 35:270Google Scholar
  135. 135.
    Voter AF, Montalenti F, Germann TC (2002) Annu Rev Mater Res 32:321Google Scholar
  136. 136.
    Aarik J, Siimon H (1994) Appl Surf Sci 81:281Google Scholar
  137. 137.
    Rose M, Bartha JW (2009) Appl Surf Sci 255:6620Google Scholar
  138. 138.
    Gobbert M (2002) Thin Solid Films 410:129Google Scholar
  139. 139.
    Gobbert MK, Prasad V, Cale TS (1031) J Vac Sci Technol B: Microelectron Nanometer Struct 2002:20Google Scholar
  140. 140.
    Gobbert MK, Cale TS (2007) Surf Coat Technol 201:8830Google Scholar
  141. 141.
    Gordon RG, Hausmann D, Kim E, Shepard J (2003) Chem Vap Deposition 9:73Google Scholar
  142. 142.
    Dendooven J, Deduytsche D, Musschoot J, Vanmeirhaeghe RL, Detavernier C (2009) J Electrochem Soc 156:P63Google Scholar
  143. 143.
    Kim J-Y, Ahn J-H, Kang S-W, Kim J-H (2007) J Appl Phys 101:073502Google Scholar
  144. 144.
    Cleveland ER, Banerjee P, Perez I, Lee SB, Rubloff GW (2010) ACS Nano 4:4637Google Scholar
  145. 145.
    Adomaitis RA (2010) J Cryst Growth 312:1449Google Scholar
  146. 146.
    Knoops HCM, Langereis E, van de Sanden MCM, Kessels WMM (2010) J Electrochem Soc 157:G241Google Scholar
  147. 147.
    Tinck S, Bogaerts A (2011) Plasma Sources Sci Technol 20:015008Google Scholar
  148. 148.
    Sengupta D, Mazumder S, Kuykendall W, Lowry S (2005) J Cryst Growth 279:369Google Scholar
  149. 149.
    Mukinovic M, Brenner G, Khanderi J, Spoellmann S, Fischer RA, Tafipolsky M, Cadenbach T, Schmid R (2005) Chem Vap Deposition 11:306Google Scholar
  150. 150.
    Cavallotti C (2010) Chem Vap Deposition 16:329Google Scholar
  151. 151.
    Van Veldhuizen S, Vuik C, Kleijn CR (2007) Surf Coat Technol 201:8859Google Scholar
  152. 152.
    Ylilammi M (1995) J Electrochem Soc 142:2474Google Scholar
  153. 153.
    Lankhorst AM, Paarhuis BD, Terhorst HJCM, Simons PJPM, Kleijn CR (2007) Surf Coat Technol 201:8842Google Scholar
  154. 154.
    Stout PJ, Adams V, Ventzek PLG (2006) J Vac Sci Technol B: Microelectron Nanometer Struct 24:2372Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Tyndall National InstituteUniversity College CorkCorkIreland

Personalised recommendations