Gene Expression and Epigenetic Deregulation

  • Rita Shaknovich
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 792)


The last decade resulted in many scientific discoveries illuminating epigenetic mechanisms of gene regulation and genome organization. DNA methylation emerged as playing a pivotal role in development and cancer. Genome-wide changes in DNA methylation, including hypermethylation of tumor suppressor genes and genome-wide loss of methylation, are two dominant mechanisms that deregulate gene expression and contribute to chromosomal instability. In this chapter we give an overview of how methylation patterns are established during B-cell development and what machinery is necessary to maintain those patterns. We summarize the current state of knowledge of aberrant changes taking place during and contributing to lymphoid transformation in general and to the development of CLL in particular. We discuss key deregulated biomarkers extensively studied using single-gene approaches and give an overview of a wealth of data that became available from genome-wide approaches, focusing on pathways that are critical for lymphomagenesis. We also highlight epigenetic differences between known prognostic groups of CLL.


Lymphomagenesis Chronic lymphocytic leukemia smRNA DNA methylation Histone modifications DNA methyltransferases (DNMT) MBD proteins Cell of origin CpG 


  1. 1.
    Verona RI, Mann MR, Bartolomei MS. Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu Rev Cell Dev Biol. 2003;19:237–59.PubMedGoogle Scholar
  2. 2.
    Mann MR, Chung YG, Nolen LD, Verona RI, Latham KE, Bartolomei MS. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol Reprod. 2003;69(3):902–14.PubMedGoogle Scholar
  3. 3.
    Chilosi M, Lestani M, Piazzola E, Guasparri II, Mariuzzi GM. Genomic imprinting in human biology and pathology. Adv Clin Path. 1998;2(1):15–24.PubMedGoogle Scholar
  4. 4.
    Heard E, Clerc P, Avner P. X-chromosome inactivation in mammals. Annu Rev Genet. 1997;31:571–610.PubMedGoogle Scholar
  5. 5.
    Esteller M. DNA methylation and cancer therapy: new developments and expectations. Curr Opin Oncol. 2005;17(1):55–60.PubMedGoogle Scholar
  6. 6.
    Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92. Epub 2012/05/30.PubMedGoogle Scholar
  7. 7.
    Fazzari MJ, Greally JM. Epigenomics: beyond CpG islands. Nat Rev Genet. 2004;5(6):446–55.PubMedGoogle Scholar
  8. 8.
    Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89–97.PubMedGoogle Scholar
  9. 9.
    Brenner C, Deplus R, Didelot C, Loriot A, Vire E, De Smet C, et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 2005;24(2):336–46.PubMedGoogle Scholar
  10. 10.
    Prendergast GC, Ziff EB. Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science. 1991;251(4990):186–9.PubMedGoogle Scholar
  11. 11.
    Shaknovich R, Cerchietti L, Tsikitas L, Kormaksson M, De S, Figueroa ME, et al. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation. Blood. 2011;118(13):3559–69. Epub 2011/08/11.PubMedGoogle Scholar
  12. 12.
    Ha K, Lee GE, Palii SS, Brown KD, Takeda Y, Liu K, et al. Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Hum Mol Genet. 2011;20(1):126–40. Epub 2010/10/14.PubMedGoogle Scholar
  13. 13.
    Sasai N, Matsuda E, Sarashina E, Ishida Y, Kawaichi M. Identification of a novel BTB-zinc finger transcriptional repressor, CIBZ, that interacts with CtBP corepressor. Genes Cells. 2005;10(9):871–85.PubMedGoogle Scholar
  14. 14.
    Filion GJ, Zhenilo S, Salozhin S, Yamada D, Prokhortchouk E, Defossez PA. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol. 2006;26(1):169–81.PubMedGoogle Scholar
  15. 15.
    Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet. 1999;23(1):58–61.PubMedGoogle Scholar
  16. 16.
    Yoon HG, Chan DW, Reynolds AB, Qin J, Wong J. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell. 2003;12(3):723–34.PubMedGoogle Scholar
  17. 17.
    Sansom OJ, Berger J, Bishop SM, Hendrich B, Bird A, Clarke AR. Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nat Genet. 2003;34(2):145–7.PubMedGoogle Scholar
  18. 18.
    Campbell PM, Bovenzi V, Szyf M. Methylated DNA-binding protein 2 antisense inhibitors suppress tumourigenesis of human cancer cell lines in vitro and in vivo. Carcinogenesis. 2004;25(4):499–507.PubMedGoogle Scholar
  19. 19.
    Lopes ME, Figueroa ME, Meng F, Mazur A, Schreiber-Agus N, Prokhortchouk E, et al. Kaiso is a methylation-dependent oncogene in colon cancer. In preparation. 2006.Google Scholar
  20. 20.
    Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22. Epub 2009/10/16.PubMedGoogle Scholar
  21. 21.
    Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7. Epub 2009/02/03.PubMedGoogle Scholar
  22. 22.
    Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007;39(2):237–42. Epub 2007/01/11.PubMedGoogle Scholar
  23. 23.
    Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet. 2007;39(2):232–6. Epub 2007/01/04.PubMedGoogle Scholar
  24. 24.
    Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, et al. Epigenetic stem cell signature in cancer. Nat Genet. 2007;39(2):157–8. Epub 2007/01/04.PubMedGoogle Scholar
  25. 25.
    Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol. 2010;28(10):1097–105. Epub 2010/09/21.PubMedGoogle Scholar
  26. 26.
    Clark C, Palta P, Joyce CJ, Scott C, Grundberg E, Deloukas P, et al. A comparison of the whole genome approach of MeDIP-seq to the targeted approach of the Infinium Human Methylation 450 Bead Chip ((R)) for methylome profiling. PLoS One. 2012;7(11):e50233. Epub 2012/12/05.PubMedGoogle Scholar
  27. 27.
    Fouse SD, Nagarajan RO, Costello JF. Genome-scale DNA methylation analysis. Epigenomics. 2010;2(1):105–17. Epub 2010/07/27.PubMedGoogle Scholar
  28. 28.
    Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19(5):698–711. Epub 2010/11/16.PubMedGoogle Scholar
  29. 29.
    Klein U, Dalla-Favera R. New insights into the pathogenesis of chronic lymphocytic leukemia. Semin Cancer Biol. 2010;20(6):377–83. Epub 2010/10/30.PubMedGoogle Scholar
  30. 30.
    Thelander EF, Rosenquist R. Molecular genetic characterization reveals new subsets of mantle cell lymphoma. Leuk Lymphoma. 2008;49(6):1042–9. Epub 2008/05/03.PubMedGoogle Scholar
  31. 31.
    Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. Epub 2000/02/17.PubMedGoogle Scholar
  32. 32.
    Lossos IS, Alizadeh AA, Eisen MB, Chan WC, Brown PO, Botstein D, et al. Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas. Proc Natl Acad Sci U S A. 2000;97(18):10209–13. Epub 2000/08/24.PubMedGoogle Scholar
  33. 33.
    Gutierrez NC, Garcia-Sanz R, San Miguel JF. Molecular biology of myeloma. Clin Transl Oncol. 2007;9(10):618–24. Epub 2007/11/03.PubMedGoogle Scholar
  34. 34.
    Shaughnessy Jr JD. Global gene expression profiling in the study of multiple myeloma. Int J Hematol. 2003;77(3):213–25. Epub 2003/05/07.PubMedGoogle Scholar
  35. 35.
    Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature. 2010;467(7313):338–42. Epub 2010/08/20.PubMedGoogle Scholar
  36. 36.
    Deaton AM, Webb S, Kerr AR, Illingworth RS, Guy J, Andrews R, et al. Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res. 2011;21(7):1074–86. Epub 2011/06/02.PubMedGoogle Scholar
  37. 37.
    Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454(7205):766–70. Epub 2008/07/05.PubMedGoogle Scholar
  38. 38.
    Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y, et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001;97(5):1172–9. Epub 2001/02/27.PubMedGoogle Scholar
  39. 39.
    Kn H, Bassal S, Tikellis C, El-Osta A. Expression analysis of the epigenetic methyltransferases and methyl-CpG binding protein families in the normal B-cell and B-cell chronic lymphocytic leukemia (CLL). Cancer Biol Ther. 2004;3(10):989–94.PubMedGoogle Scholar
  40. 40.
    Esteller M, Gaidano G, Goodman SN, Zagonel V, Capello D, Botto B, et al. Hypermethylation of the DNA repair gene O(6)-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J Natl Cancer Inst. 2002;94(1):26–32.PubMedGoogle Scholar
  41. 41.
    Sherr CJ, Weber JD. The ARF/p53 pathway. Curr Opin Genet Dev. 2000;10(1):94–9.PubMedGoogle Scholar
  42. 42.
    Mercer WE. Checking on the cell cycle. J Cell Biochem Suppl. 1998;30–31:50–4.PubMedGoogle Scholar
  43. 43.
    Baur AS, Shaw P, Burri N, Delacretaz F, Bosman FT, Chaubert P. Frequent methylation silencing of p15(INK4b) (MTS2) and p16(INK4a) (MTS1) in B-cell and T-cell lymphomas. Blood. 1999;94(5):1773–81.PubMedGoogle Scholar
  44. 44.
    Garcia MJ, Martinez-Delgado B, Cebrian A, Martinez A, Benitez J, Rivas C. Different incidence and pattern of p15INK4b and p16INK4a promoter region hypermethylation in Hodgkin’s and CD30-positive non-Hodgkin’s lymphomas. Am J Pathol. 2002;161(3):1007–13.PubMedGoogle Scholar
  45. 45.
    Ng MH, Chung YF, Lo KW, Wickham NW, Lee JC, Huang DP. Frequent hypermethylation of p16 and p15 genes in multiple myeloma. Blood. 1997;89(7):2500–6.PubMedGoogle Scholar
  46. 46.
    Taniguchi T, Chikatsu N, Takahashi S, Fujita A, Uchimaru K, Asano S, et al. Expression of p16INK4A and p14ARF in hematological malignancies. Leukemia. 1999;13(11):1760–9.PubMedGoogle Scholar
  47. 47.
    Garcia JF, Villuendas R, Algara P, Saez AI, Sanchez-Verde L, Martinez-Montero JC, et al. Loss of p16 protein expression associated with methylation of the p16INK4A gene is a frequent finding in Hodgkin’s disease. Lab Invest. 1999;79(12):1453–9.PubMedGoogle Scholar
  48. 48.
    Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94(6):1840–7. Epub 1999/09/09.PubMedGoogle Scholar
  49. 49.
    Hamblin TJ, Orchard JA, Ibbotson RE, Davis Z, Thomas PW, Stevenson FK, et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood. 2002;99(3):1023–9. Epub 2002/01/25.PubMedGoogle Scholar
  50. 50.
    Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848–54. Epub 1999/09/09.PubMedGoogle Scholar
  51. 51.
    Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med. 2001;194(11):1625–38. Epub 2001/12/26.PubMedGoogle Scholar
  52. 52.
    Chiorazzi N, Ferrarini M. Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood. 2011;117(6):1781–91. Epub 2010/12/15.PubMedGoogle Scholar
  53. 53.
    Seifert M, Sellmann L, Bloehdorn J, Wein F, Stilgenbauer S, Durig J, et al. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J Exp Med. 2012;209(12):2183–98. Epub 2012/10/24.PubMedGoogle Scholar
  54. 54.
    Kulis M, Heath S, Bibikova M, Queiros AC, Navarro A, Clot G, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet. 2012;44(11):1236–42. Epub 2012/10/16.PubMedGoogle Scholar
  55. 55.
    Chen SS, Raval A, Johnson AJ, Hertlein E, Liu TH, Jin VX, et al. Epigenetic changes during disease progression in a murine model of human chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2009;106(32):13433–8. Epub 2009/08/12.PubMedGoogle Scholar
  56. 56.
    Chen SS, Sherman MH, Hertlein E, Johnson AJ, Teitell MA, Byrd JC, et al. Epigenetic alterations in a murine model for chronic lymphocytic leukemia. Cell Cycle. 2009;8(22):3663–7. Epub 2009/11/11.PubMedGoogle Scholar
  57. 57.
    Baylin SB, Ohm JE. Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6(2):107–16. Epub 2006/02/24.PubMedGoogle Scholar
  58. 58.
    Browning RL, Geyer SM, Johnson AJ, Jelinek DF, Tschumper RC, Call TG, et al. Expression of TCL-1 as a potential prognostic factor for treatment outcome in B-cell chronic lymphocytic leukemia. Leuk Res. 2007;31(12):1737–40. Epub 2007/07/31.PubMedGoogle Scholar
  59. 59.
    Rush LJ, Raval A, Funchain P, Johnson AJ, Smith L, Lucas DM, et al. Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets. Cancer Res. 2004;64(7):2424–33. Epub 2004/04/03.PubMedGoogle Scholar
  60. 60.
    Cahill N, Bergh AC, Kanduri M, Goransson-Kultima H, Mansouri L, Isaksson A, et al. 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments. Leukemia. 2012;27:150–8. Epub 2012/08/28.PubMedGoogle Scholar
  61. 61.
    Wahlfors J, Hiltunen H, Heinonen K, Hamalainen E, Alhonen L, Janne J. Genomic hypomethylation in human chronic lymphocytic leukemia. Blood. 1992;80(8):2074–80. Epub 1992/10/15.PubMedGoogle Scholar
  62. 62.
    Fabris S, Bollati V, Agnelli L, Morabito F, Motta V, Cutrona G, et al. Biological and clinical relevance of quantitative global methylation of repetitive DNA sequences in chronic lymphocytic leukemia. Epigenetics. 2011;6(2):188–94. Epub 2010/10/12.PubMedGoogle Scholar
  63. 63.
    Davids MS, Brown JR. Targeting the B cell receptor pathway in chronic lymphocytic leukemia. Leuk Lymphoma. 2012;53(12):2362–70. Epub 2012/05/24.PubMedGoogle Scholar
  64. 64.
    Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117(2):563–74. Epub 2010/10/14.PubMedGoogle Scholar
  65. 65.
    Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ. Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol. 2000;164(4):2200–6. Epub 2000/02/05.PubMedGoogle Scholar
  66. 66.
    Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC. bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood. 1993;82(6):1820–8. Epub 1993/09/15.PubMedGoogle Scholar
  67. 67.
    Wong KY, So CC, Loong F, Chung LP, Lam WW, Liang R, et al. Epigenetic inactivation of the miR-124-1 in haematological malignancies. PLoS One. 2011;6(4):e19027. Epub 2011/05/06.PubMedGoogle Scholar
  68. 68.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–9. Epub 2002/11/16.PubMedGoogle Scholar
  69. 69.
    Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17(1):28–40. Epub 2010/01/12.PubMedGoogle Scholar
  70. 70.
    Baer C, Claus R, Frenzel LP, Zucknick M, Park YJ, Gu L, et al. Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res. 2012;72(15):3775–85. Epub 2012/06/20.PubMedGoogle Scholar
  71. 71.
    Kantharidis P, El-Osta A, deSilva M, Wall DM, Hu XF, Slater A, et al. Altered methylation of the human MDR1 promoter is associated with acquired multidrug resistance. Clin Cancer Res. 1997;3(11):2025–32. Epub 1998/11/17.PubMedGoogle Scholar
  72. 72.
    Yuille MR, Condie A, Stone EM, Wilsher J, Bradshaw PS, Brooks L, et al. TCL1 is activated by chromosomal rearrangement or by hypomethylation. Genes Chromosomes Cancer. 2001;30(4):336–41. Epub 2001/03/10.PubMedGoogle Scholar
  73. 73.
    Kanduri M, Cahill N, Goransson H, Enstrom C, Ryan F, Isaksson A, et al. Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia. Blood. 2010;115(2):296–305. Epub 2009/11/10.PubMedGoogle Scholar
  74. 74.
    Rahmatpanah FB, Carstens S, Hooshmand SI, Welsh EC, Sjahputera O, Taylor KH, et al. Large-scale analysis of DNA methylation in chronic lymphocytic leukemia. Epigenomics. 2009;1(1):39–61. Epub 2010/05/25.PubMedGoogle Scholar
  75. 75.
    Tong WG, Wierda WG, Lin E, Kuang SQ, Bekele BN, Estrov Z, et al. Genome-wide DNA methylation profiling of chronic lymphocytic leukemia allows identification of epigenetically repressed molecular pathways with clinical impact. Epigenetics. 2010;5(6):499–508. Epub 2010/05/21.PubMedGoogle Scholar
  76. 76.
    Corcoran M, Parker A, Orchard J, Davis Z, Wirtz M, Schmitz OJ, et al. ZAP-70 methylation status is associated with ZAP-70 expression status in chronic lymphocytic leukemia. Haematologica. 2005;90(8):1078–88. Epub 2005/08/05.PubMedGoogle Scholar
  77. 77.
    Claus R, Lucas DM, Stilgenbauer S, Ruppert AS, Yu L, Zucknick M, et al. Quantitative DNA methylation analysis identifies a single CpG dinucleotide important for ZAP-70 expression and predictive of prognosis in chronic lymphocytic leukemia. J Clin Oncol. 2012;30(20):2483–91. Epub 2012/05/09.PubMedGoogle Scholar
  78. 78.
    Chen SS, Claus R, Lucas DM, Yu L, Qian J, Ruppert AS, et al. Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL. Blood. 2011;117(3):862–71. Epub 2010/11/26.PubMedGoogle Scholar
  79. 79.
    Yuille MR, Matutes E, Marossy A, Hilditch B, Catovsky D, Houlston RS. Familial chronic lymphocytic leukaemia: a survey and review of published studies. Br J Haematol. 2000;109(4):794–9. Epub 2000/08/06.PubMedGoogle Scholar
  80. 80.
    Raval A, Tanner SM, Byrd JC, Angerman EB, Perko JD, Chen SS, et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell. 2007;129(5):879–90. Epub 2007/06/02.PubMedGoogle Scholar
  81. 81.
    Cosialls AM, Santidrian AF, Coll-Mulet L, Iglesias-Serret D, Gonzalez-Girones DM, Perez-Perarnau A, et al. Epigenetic profile in chronic lymphocytic leukemia using methylation-specific multiplex ligation-dependent probe amplification. Epigenomics. 2012;4(5):491–501. Epub 2012/11/08.PubMedGoogle Scholar
  82. 82.
    Qian J, Yao DM, Lin J, Wang YL, Han LX, Xu WR, et al. Methylation of DAPK1 promoter: frequent but not an adverse prognostic factor in myelodysplastic syndrome. Int J Lab Hematol. 2010;32(1 Pt 2):74–81. Epub 2009/02/07.PubMedGoogle Scholar
  83. 83.
    Irving L, Mainou-Fowler T, Parker A, Ibbotson RE, Oscier DG, Strathdee G. Methylation markers identify high risk patients in IGHV mutated chronic lymphocytic leukemia. Epigenetics. 2011;6(3):300–6. Epub 2010/11/06.PubMedGoogle Scholar
  84. 84.
    Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101–5. Epub 2011/06/07.PubMedGoogle Scholar
  85. 85.
    Di Ianni M, Baldoni S, Rosati E, Ciurnelli R, Cavalli L, Martelli MF, et al. A new genetic lesion in B-CLL: a NOTCH1 PEST domain mutation. Br J Haematol. 2009;146(6):689–91. Epub 2009/07/17.PubMedGoogle Scholar
  86. 86.
    Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M, Fettucciari K, et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood. 2009;113(4):856–65. Epub 2008/09/18.PubMedGoogle Scholar
  87. 87.
    Zenz T, Habe S, Denzel T, Mohr J, Winkler D, Buhler A, et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood. 2009;114(13):2589–97. Epub 2009/08/01.PubMedGoogle Scholar
  88. 88.
    Li XJ, Ji MH, Zhong SL, Zha QB, Xu JJ, Zhao JH, et al. MicroRNA-34a modulates chemosensitivity of breast cancer cells to adriamycin by targeting Notch1. Arch Med Res. 2012;43(7):514–21. Epub 2012/10/23.PubMedGoogle Scholar
  89. 89.
    Yu X, Zhang W, Ning Q, Luo X. MicroRNA-34a inhibits human brain glioma cell growth by down-regulation of Notch1. J Huazhong Univ Sci Technol Med Sci. 2012;32(3):370–4. Epub 2012/06/12.PubMedGoogle Scholar
  90. 90.
    Jiang P, Liu R, Zheng Y, Liu X, Chang L, Xiong S, et al. MiR-34a inhibits lipopolysaccharide-induced inflammatory response through targeting Notch1 in murine macrophages. Exp Cell Res. 2012;318(10):1175–84. Epub 2012/04/10.PubMedGoogle Scholar
  91. 91.
    Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM, et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2004;101(9):3118–23. Epub 2004/02/20.PubMedGoogle Scholar
  92. 92.
    Chim CS, Pang R, Liang R. Epigenetic dysregulation of the Wnt signalling pathway in chronic lymphocytic leukaemia. J Clin Pathol. 2008;61(11):1214–9. Epub 2008/09/04.PubMedGoogle Scholar
  93. 93.
    Moskalev EA, Luckert K, Vorobjev IA, Mastitsky SE, Gladkikh AA, Stephan A, et al. Concurrent epigenetic silencing of wnt/beta-catenin pathway inhibitor genes in B cell chronic lymphocytic leukaemia. BMC Cancer. 2012;12:213. Epub 2012/06/08.PubMedGoogle Scholar
  94. 94.
    Pei L, Choi JH, Liu J, Lee EJ, McCarthy B, Wilson JM, et al. Genome-wide DNA methylation analysis reveals novel epigenetic changes in chronic lymphocytic leukemia. Epigenetics. 2012;7(6):567–78. Epub 2012/04/27.PubMedGoogle Scholar
  95. 95.
    Gandhirajan RK, Staib PA, Minke K, Gehrke I, Plickert G, Schlosser A, et al. Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia. 2010;12(4):326–35. Epub 2010/04/03.PubMedGoogle Scholar
  96. 96.
    Liu TH, Raval A, Chen SS, Matkovic JJ, Byrd JC, Plass C. CpG island methylation and expression of the secreted frizzled-related protein gene family in chronic lymphocytic leukemia. Cancer Res. 2006;66(2):653–8. Epub 2006/01/21.PubMedGoogle Scholar
  97. 97.
    Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem. 2009;78:273–304. Epub 2009/04/10.PubMedGoogle Scholar
  98. 98.
    Giulino-Roth L, Wang K, Macdonald TY, Mathew S, Tam Y, Cronin MT, et al. Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in anti-apoptotic and chromatin-remodeling genes. Blood. 2012;120(26):5181–4. Epub 2012/10/24.PubMedGoogle Scholar
  99. 99.
    Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet. 2012;44(1):47–52. Epub 2011/12/14.Google Scholar
  100. 100.
    Guan B, Wang TL, Shih IM. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 2011;71(21):6718–27. Epub 2011/09/09.PubMedGoogle Scholar
  101. 101.
    Harada A, Okada S, Konno D, Odawara J, Yoshimi T, Yoshimura S, et al. Chd2 interacts with H3.3 to determine myogenic cell fate. EMBO J. 2012;31(13):2994–3007.PubMedGoogle Scholar
  102. 102.
    Szenker E, Ray-Gallet D, Almouzni G. The double face of the histone variant H3.3. Cell Res. 2011;21(3):421–34.PubMedGoogle Scholar
  103. 103.
    Marfella CG, Ohkawa Y, Coles AH, Garlick DS, Jones SN, Imbalzano AN. Mutation of the SNF2 family member Chd2 affects mouse development and survival. J Cell Physiol. 2006;209(1):162–71. Epub 2006/07/01.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MedicineWeill Cornell Medical CollegeNew YorkUSA
  2. 2.Department of PathologyWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations