Lie Groups pp 437-444 | Cite as

Minors of Toeplitz Matrices

  • Daniel Bump
Part of the Graduate Texts in Mathematics book series (GTM, volume 225)


This chapter can be read immediately after Chap. 39. It may also be skipped without loss of continuity. It gives further examples of how Frobenius–Schur duality can be used to give information about problems related to random matrix theory.


  1. 22.
    A. Böttcher and B. Silbermann. Introduction to Large Truncated Toeplitz Matrices. Universitext. Springer-Verlag, New York, 1999.CrossRefzbMATHGoogle Scholar
  2. 28.
    D. Bump and P. Diaconis. Toeplitz minors. J. Combin. Theory Ser. A, 97(2):252–271, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 30.
    D. Bump, P. Diaconis, and J. Keller. Unitary correlations and the Fejér kernel. Math. Phys. Anal. Geom., 5(2):101–123, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 157.
    G. Szegö. On certain Hermitian forms associated with the Fourier series of a positive function. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.], 1952(Tome Supplementaire):228–238, 1952.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniel Bump
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations