Lie Groups pp 407-417 | Cite as

Random Matrix Theory

  • Daniel Bump
Part of the Graduate Texts in Mathematics book series (GTM, volume 225)


In this chapter, we will work not with \(\mathrm{GL}(n, \mathbb{C})\) but with its compact subgroup U(n). As in the previous chapters, we will consider elements of \(\mathcal{R}_{k}\) as generalized characters on S k . If \(\mathbf{f} \in \mathcal{R}_{k}\), then \(f ={ \mathrm{ch}}^{(n)}(\mathbf{f}) \in \varLambda _{k}^{(n)}\) is a symmetric polynomial in n variables, homogeneous of weight k. Then \(\psi _{f}: \mathrm{U}(n)\longrightarrow \mathbb{C}\), defined by ( 33.6), is the function on U(n) obtained by applying f to the eigenvalues of g ∈U(n). We will denote \(\psi _{f} ={ \mathrm{Ch}}^{(n)}(\mathbf{f})\). Thus, Ch(n) maps the additive group of generalized characters on S k to the additive group of generalized characters on U(n). It extends by linearity to a map from the Hilbert space of class functions on S k to the Hilbert space of class functions on U(n).


  1. 4.
    Gernot Akemann, Jinho Baik, and Philippe Di Francesco, editors. The Oxford handbook of random matrix theory. Oxford University Press, Oxford, 2011.Google Scholar
  2. 7.
    Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni. An introduction to random matrices, volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.Google Scholar
  3. 18.
    P. Billingsley. Probability and Measure. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, third edition, 1995. A Wiley-Interscience Publication.Google Scholar
  4. 29.
    D. Bump and A. Gamburd. On the averages of characteristic polynomials from classical groups. Comm. Math. Phys., 265(1):227–274, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 30.
    D. Bump, P. Diaconis, and J. Keller. Unitary correlations and the Fejér kernel. Math. Phys. Anal. Geom., 5(2):101–123, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 38.
    B. Conrey. L-functions and random matrices. In Mathematics unlimited—2001 and beyond, pages 331–352. Springer, Berlin, 2001.Google Scholar
  7. 40.
    P. A. Deift. Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, volume 3 of Courant Lecture Notes in Mathematics. New York University Courant Institute of Mathematical Sciences, New York, 1999.Google Scholar
  8. 42.
    P. Diaconis and M. Shahshahani. On the eigenvalues of random matrices. J. Appl. Probab., 31A:49–62, 1994. Studies in applied probability.Google Scholar
  9. 48.
    F. Dyson. Statistical theory of the energy levels of complex systems, I, II, III. J. Mathematical Phys., 3:140–156, 157–165, 166–175, 1962.Google Scholar
  10. 49.
    Freeman Dyson. Selected papers of Freeman Dyson with commentary, volume 5 of Collected Works. American Mathematical Society, Providence, RI, 1996. With a foreword by Elliott H. Lieb.Google Scholar
  11. 94.
    N. Katz and P. Sarnak. Zeroes of zeta functions and symmetry. Bull. Amer. Math. Soc. (N.S.), 36(1):1–26, 1999.Google Scholar
  12. 95.
    Nicholas M. Katz and Peter Sarnak. Random matrices, Frobenius eigenvalues, and monodromy, volume 45 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1999.Google Scholar
  13. 99.
    J. Keating and N. Snaith. Random matrix theory and ζ(1∕2 + it). Comm. Math. Phys., 214(1):57–89, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 128.
    M. Mehta. Random Matrices. Academic Press Inc., Boston, MA, second edition, 1991.zbMATHGoogle Scholar
  15. 139.
    Michael Rubinstein. Computational methods and experiments in analytic number theory. In Recent perspectives in random matrix theory and number theory, volume 322 of London Math. Soc. Lecture Note Ser., pages 425–506. Cambridge Univ. Press, Cambridge, 2005.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniel Bump
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations