Lie Groups pp 379-385 | Cite as

Schur Polynomials and \(\mathrm{GL}(n, \mathbb{C})\)

  • Daniel Bump
Part of the Graduate Texts in Mathematics book series (GTM, volume 225)


Now let \(s_{\mu }(x_{1},\ldots,x_{n})\) be the symmetric polynomial \({\mathrm{ch}}^{(n)}(\mathbf{s}_{\mu })\); we will use the same notation s μ for the element \(\mathrm{ch}(\mathbf{s}_{\mu })\) of the inverse limit ring Λ defined by (34.10). These are the Schur polynomials.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniel Bump
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations