Advertisement

Lie Groups pp 303-318 | Cite as

Embeddings of Lie Groups

  • Daniel Bump
Chapter
Part of the Graduate Texts in Mathematics book series (GTM, volume 225)

Abstract

In this chapter, we will contemplate how Lie groups embed in one another. Our aim is not to be systematic or even completely precise but to give the reader some tools for thinking about the relationships between different Lie groups.

Keywords

Simple Root Parabolic Subgroup Maximal Torus Dynkin Diagram Quadratic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 5.
    A. Albert. Structure of Algebras. American Mathematical Society Colloquium Publications, vol. 24. American Mathematical Society, New York, 1939.Google Scholar
  2. 36.
    C. Chevalley. The Algebraic Theory of Spinors and Clifford Algebras. Springer-Verlag, Berlin, 1997. Collected works. Vol. 2, edited and with a foreword by Pierre Cartier and Catherine Chevalley, with a postface by J.-P. Bourguignon.Google Scholar
  3. 45.
    E. Dynkin. Maximal subgroups of semi-simple Lie groups and the classification of primitive groups of transformations. Doklady Akad. Nauk SSSR (N.S.), 75:333–336, 1950.Google Scholar
  4. 47.
    E. Dynkin. Semisimple subalgebras of semisimple Lie algebras. Mat. Sbornik N.S., 30(72):349–462, 1952.Google Scholar
  5. 56.
    R. Goodman and N. Wallach. Representations and Invariants of the Classical Groups, volume 68 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1998.zbMATHGoogle Scholar
  6. 73.
    R. Howe. θ-series and invariant theory. In Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pages 275–285. Amer. Math. Soc., Providence, R.I., 1979.Google Scholar
  7. 78.
    R. Howe and E.-C. Tan. Nonabelian Harmonic Analysis. Universitext. Springer-Verlag, New York, 1992. Applications of SL(2,R).Google Scholar
  8. 88.
    N. Jacobson. Exceptional Lie Algebras, volume 1 of Lecture Notes in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1971.zbMATHGoogle Scholar
  9. 107.
    M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol. The Book of Involutions, volume 44 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits.Google Scholar
  10. 138.
    H. Rubenthaler. Les paires duales dans les algèbres de Lie réductives. Astérisque, 219, 1994.Google Scholar
  11. 146.
    R. Schafer. An Introduction to Nonassociative Algebras. Pure and Applied Mathematics, Vol. 22. Academic Press, New York, 1966.Google Scholar
  12. 171.
    A. Weil. Algebras with involutions and the classical groups. J. Indian Math. Soc. (N.S.), 24:589–623 (1961), 1960.Google Scholar
  13. 172.
    A. Weil. Sur certains groupes d’opérateurs unitaires. Acta Math., 111:143–211, 1964.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 173.
    A. Weil. Sur la formule de Siegel dans la théorie des groupes classiques. Acta Math., 113:1–87, 1965.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniel Bump
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations