Advertisement

Lie Groups pp 213-226 | Cite as

Coxeter Groups

  • Daniel Bump
Chapter
Part of the Graduate Texts in Mathematics book series (GTM, volume 225)

Abstract

As we will see in this chapter, Weyl groups and affine Weyl groups are examples of Coxeter groups, an important family of groups generated by “reflections.”

References

  1. 1.
    Peter Abramenko and Kenneth S. Brown. Buildings, volume 248 of Graduate Texts in Mathematics. Springer, New York, 2008. Theory and applications.Google Scholar
  2. 23.
    Nicolas Bourbaki. Lie groups and Lie algebras. Chapters  4 6. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley.
  3. 91.
    V. Jones. Hecke algebra representations of braid groups and link polynomials. Ann. of Math. (2), 126:335–388, 1987.Google Scholar
  4. 127.
    H. Matsumoto. Générateurs et relations des groupes de Weyl généralisés. C. R. Acad. Sci. Paris, 258:3419–3422, 1964.MathSciNetzbMATHGoogle Scholar
  5. 135.
    N. Reshetikhin and V. G. Turaev. Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math., 103(3):547–597, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 163.
    Jacques Tits. Buildings of spherical type and finite BN-pairs. Lecture Notes in Mathematics, Vol. 386. Springer-Verlag, Berlin, 1974.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniel Bump
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations