Advertisement

Electronic Structure Calculations in Molecules

  • Natalya A. Zimbovskaya
Chapter
Part of the Springer Tracts in Modern Physics book series (STMP, volume 254)

Abstract

Electronic structure calculations are commonly recognized as the indispensable basis for studies of important observable properties in the variety of materials. These calculations are widely used in condensed matter physics and quantum chemistry, providing useful predictions for solids and solid surfaces nanostructures, molecules, and atoms. Correspondingly, a great number of computational methods and approaches were developed to carry out the electron structure calculations. Even a brief description of these methods is far beyond the scope of the present work.

Keywords

Lower Unoccupied Molecular Orbital Generalize Gradient Approximation Electron Density Distribution Electron Structure Calculation Sham Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 5.
    A.W. Ghosh, Electronics with molecules, in Comprehensive Semiconductor Science and Technology, vol. 5, ed. by P. Brattacharya, R. Fornari, H. Kamimura (Elsevier, Amsterdam, 2011), pp. 383–478Google Scholar
  2. 26.
    M. Galperin, M.A. Ratner, A. Nitzan, Molecular transport junctions: vibrational effects. J. Phys.: Condens. Matter 19, 103201 (2007)Google Scholar
  3. 27.
    J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkovski, J.P. Sithna, H.D. Abruna, P.L. McEuen, D.C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002)Google Scholar
  4. 28.
    W.J. Liang, M.P. Shores, M.P. Bockrath, J.R. Long, H. Park, Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002)Google Scholar
  5. 31.
    L.H. Yu, D. Natelson, Kondo physics in C60 single-molecule transistors. Nano Lett. 4, 79–83 (2004)Google Scholar
  6. 57.
    V. Mujica, A.E. Roitberg, M.A. Ratner, Molecular wire conductance: electrostatic potential spatial profile. J. Chem. Phys. 112, 6834–6839 (2000)Google Scholar
  7. 65.
    R. Landauer, Electrical resistance of disordered one-dimensional lattices. Phil. Mag. 21, 863–867 (1970)Google Scholar
  8. 93.
    G.D. Mahan, Many-Particle Physics (Plenum, New York, 2000)Google Scholar
  9. 104.
    A. Troisi, M.A. Ratner, Molecular transport junctions: propensity rules for inelastic electron tunneling spectra. Nano Lett. 6, 1784–1788 (2006)Google Scholar
  10. 106.
    J.G. Kushmerick, J. Lazorcik, C.H. Patterson, R. Shashidhar, D.S. Seferos, G.C. Bazan, Vibronic contributions to charge transport across molecular junctions. Nano Lett. 4, 639–642 (2004)Google Scholar
  11. 146.
    C. Romeike, M.R. Wegewijs, W. Hofstetter, H. Schoeller, Quantum-tunneling-induced Kondo effect in single molecular magnets. Phys. Rev. Lett. 96, 196601 (2006)Google Scholar
  12. 151.
    K. Park, M.R. Pederson, C.S. Hellberg, Properties of low-lying excited manifolds in Mn 12 acetate. Phys. Rev. B 69, 014416 (2004)Google Scholar
  13. 152.
    K. Park, M.R. Pederson, Effect of extra electrons on the exchange and magnetic anisotropy in the anionic single-molecule magnet Mn 12. Phys. Rev. B 70, 054414 (2004)Google Scholar
  14. 154.
    A.V. Postnikov, J. Kortus, M.R. Pederson, Density functional studies of molecular magnets. Phys. Status Solidi B 243, 2533–2572 (2006)Google Scholar
  15. 163.
    B.C. Stipe, M.A. Rezaei, W. Ho, A variable-temperature scanning tunneling microscope capable of single-molecule vibrational spectroscopy. Rev. Sci. Instrum. 70, 137–143 (1999)Google Scholar
  16. 190.
    J. Tersoff, D.R. Hamann, Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985)Google Scholar
  17. 191.
    J. Tersoff, D.R. Hamann, Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983)Google Scholar
  18. 205.
    N.S. Wingreen, K.W. Jacobsen, J.W. Wilkins, Resonant tunneling with electron-phonon interaction: an exactly solvable model. Phys. Rev. Lett. 61, 1396–1399 (1988)Google Scholar
  19. 206.
    N.S. Wingreen, K.W. Jacobsen, J.W. Wilkins, Inelastic scattering in resonant tunneling. Phys. Rev. B 40, 11834–11850 (1989)Google Scholar
  20. 207.
    A. Troisi, M.A. Ratner, Modeling the inelastic electron tunneling spectra of molecular wire junctions. Phys. Rev. B 72, 033408 (2005)Google Scholar
  21. 208.
    A. Troisi, M.A. Ratner, A. Nitzan, Vibronic effects in off-resonance molecular wire conductance. J. Chem. Phys. 118, 6072–6082 (2003)Google Scholar
  22. 248.
    M.R. Pederson, D.V. Porezag, J. Kortus, D.C. Patton, Strategies for massively parallel local-orbital-based electronic structure methods. Phys. Status Solidi B 217, 197–218 (2000)Google Scholar
  23. 292.
    R. Sessoli, D. Gatteschi, A. Caneschi, M.A. Novak, Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993)Google Scholar
  24. 303.
    A.N. Pasupathy, R.C. Bialczak, J. Martinek, J.E. Grose, L.A.K. Donev, P.L. McEuen, D.C. Ralph, The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004)Google Scholar
  25. 377.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)Google Scholar
  26. 379.
    R.O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689–746 (1989)Google Scholar
  27. 380.
    W. Kohn, A.D. Becke, R.G. Parr, Density functional theory of electronic structure. J. Phys. Chem. 100, 12974–12980 (1996)Google Scholar
  28. 381.
    N. Argaman, G. Makov, Density functional theory: an introduction. Am. J. Phys. 68, 69 (2000)Google Scholar
  29. 382.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)Google Scholar
  30. 383.
    J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49, 1691 (1982)Google Scholar
  31. 384.
    A.A. Quong, M.R. Pederson, J.L. Feldman, First principles determination of the interatomic force-constant tensor of the fullerene molecule. Solid State Commun. 87, 535–539 (1993)Google Scholar
  32. 385.
    T. Baruah, J. Kortus, M.R. Pederson, R. Wesolowski, J.T. Haraldsen, J.L. Musfeldt, J.M. North, D. Zipse, N.S. Dalal, Understanding the electronic structure, optical, and vibrational properties of the Fe8Br8 single-molecule magnet. Phys. Rev. B 70, 214410 (2004)Google Scholar
  33. 386.
    T. Baruah, M.R. Pederson, R.R. Zope, Vibrational stability and electronic structure of a B80 fullerene. Phys. Rev. B 78, 045408 (2008)Google Scholar
  34. 387.
    M.R. Pederson, K. Jackson, D.V. Porezag, Z. Hajnal, Th. Frauenheim, Vibrational signatures for low-energy intermediate-sized Si clusters. Phys. Rev. B 54, 2863–2867 (1996)Google Scholar
  35. 388.
    M.R. Pederson, T. Baruah, Molecular polarizabilities from density-functional theory: from small molecules to light harvesting complexes. Lect. Ser. Comput. Comput. Sci. 3, 156–167 (2005)Google Scholar
  36. 389.
    T. Baruah, M.R. Pederson, Density functional study on a light-harvesting carotenoid-porphyrin-C60 molecular triad. J. Chem. Phys. 125, 164706 (2006)Google Scholar
  37. 390.
    R.R. Zope, T. Baruah, M.R. Pederson, B.I. Dunlap, Static dielectric response of icosahedral fullerenes from C 60 to C 2160 characterized by an all-electron density functional theory. Phys. Rev. B 77, 115452 (2008)Google Scholar
  38. 391.
    M.R. Pederson, S.N. Khanna, Electronic structure and magnetism of Mn12O12 clusters. Phys. Rev. B 59, R693–R696 (1999)Google Scholar
  39. 392.
    M.R. Pederson, S.N. Khanna, Magnetic anisotropy barrier for spin tunneling in Mn12O12 molecules. Phys. Rev. B 60, 9566–9572 (1999)Google Scholar
  40. 393.
    R. Car, M. Partinello, Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985)Google Scholar
  41. 394.
    R.M. Wentzcovich, J.L. Martins, First principles molecular dynamics of Li: test of a new algorithm. Solid State Commun. 78, 831–834 (1991)Google Scholar
  42. 395.
    E. Wimmer, H. Krakauer, M. Weinert, A.J. Freeman, Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O 2 molecule. Phys. Rev. B 24, 864–875 (1981)Google Scholar
  43. 396.
    O.K. Andersen, Linear methods in band theory. Phys. Rev. B 12, 3060–3083 (1975)Google Scholar
  44. 397.
    M.R. Pederson, N. Bernstein, J. Kortus, Fourth-order magnetic anisotropy and tunnel splittings in Mn 12 from spin-orbit-vibron interactions. Phys. Rev. Lett. 89, 097202 (2002)Google Scholar
  45. 398.
    M.R. Pederson, C.C. Lin, All-electron self-consistent variational method for Wannier-type functions: applications to the silicon crystal. Phys. Rev. B 35, 2273–2283 (1987)Google Scholar
  46. 401.
    D.V. Porezag, M.R. Pederson, Optimization of Gaussian basis sets for density-functional calculations. Phys. Rev. A 60, 2840–2847 (1999)Google Scholar
  47. 402.
    J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)Google Scholar
  48. 403.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)Google Scholar
  49. 404.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)Google Scholar
  50. 405.
    A.D. Becke, A new mixing of Hartree–Fock and local density-functional theories, J. Chem. Phys. 98, 1372–1377 (1993)Google Scholar
  51. 406.
    C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)Google Scholar
  52. 407.
    O. Gunnarsson, B.I. Lundqvist, Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 13, 4274–4298 (1976)Google Scholar
  53. 408.
    J.P. Perdew, A. Ruzsinszky, J. Tao, V.N. Staroverov, G.E. Scuseria, G.I. Csonka, Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J. Chem. Phys. 123, 062201 (2005)Google Scholar
  54. 409.
    J.P. Perdew, Accurate density functional for the energy: real-space cutoff of the gradient expansion for the exchange hole. Phys. Rev. Lett. 55, 1665–1668 (1985)Google Scholar
  55. 410.
    J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533–16539 (1996)Google Scholar
  56. 411.
    J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003)Google Scholar
  57. 412.
    V.N. Staroverov, G.E. Scuseria, J. Tao, J.P. Perdew, Tests of a ladder of density functionals for bulk solids and surfaces. Phys. Rev. B 69, 075102 (2004)Google Scholar
  58. 413.
    J.P. Perdew, J.M. Tao, V.N. Staroverov, G.E. Scuseria, Meta-generalized gradient approximation: explanation of a realistic nonempirical density functional. J. Chem. Phys. 120, 6898–6911 (2004)Google Scholar
  59. 414.
    W. Kohn, Y. Meir, D.E. Makarov, Van der Waals energies in density functional theory. Phys. Rev. Lett. 80, 4153–4156 (1998)Google Scholar
  60. 415.
    E.K.U. Gross, W. Kohn, Local density-functional theory of frequency-dependent linear response. Phys. Rev. Lett. 55, 2850–2852 (1985)Google Scholar
  61. 416.
    J.F. Janak, Proof that ∂ E ∕ ∂ n i = ε in density-functional theory. Phys. Rev. B 18, 7165–7168 (1978)Google Scholar
  62. 417.
    L.J. Sham, W. Kohn, One-particle properties of an inhomogeneous interacting electron gas. Phys. Rev. 145, 561–567 (1966)Google Scholar
  63. 418.
    N. Hadjisavvas, A. Theophilou, Rigorous formulation of Slaters transition-state theory for excited states. Phys. Rev. A 32, 720–724 (1985)Google Scholar
  64. 419.
    M. Levy, J.P. Perdew, Extrema of the density functional for the energy: excited states from the ground-state theory. Phys. Rev. B 31, 6264–6272 (1985)Google Scholar
  65. 420.
    T. Baruah, M.R. Pederson, DFT calculations on charge-transfer states of a carotenoid-porphyrin-C60 molecular triad. J. Chem. Theor. Comput. 5, 834–843 (2009)Google Scholar
  66. 421.
    E. Runge, E.K.U. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984)Google Scholar
  67. 422.
    R. van Leeuwen, Causality and symmetry in time-dependent density-functional theory. Phys. Rev. Lett. 80, 1280–1283 (1998)Google Scholar
  68. 423.
    M.A.L. Marques, C.A. Ulrich, F. Nogueira, A. Rubio, K. Burke, E.K.U. Gross (eds), Time-Dependent Density Functional Theory, Lecture Notes in Physics (Springer, New York, 2006)Google Scholar
  69. 424.
    X. Wang, R.Q. Zhang, S.T. Lee, T.A. Niehaus, Th. Frauenheim, Unusual size dependence of the optical emission gap in small hydrogenated silicon nanoparticles. Appl. Phys. Lett. 90, 123116 (2007)Google Scholar
  70. 427.
    G.K. Gueorguiev, J.M. Pacheco, D. Tomanek, Quantum size effects in the polarizability of carbon, fullerenes. Phys. Rev. Lett. 92, 215501 (2004)Google Scholar
  71. 428.
    Y.H. Hu, E. Ruckenstein, Bond order bond polarizability model for fullerene cages and nanotubes. J. Chem. Phys. 123, 214708 (2005)Google Scholar
  72. 429.
    E. Westin, A. Rosen, G.T. Velde, E.J. Baerends, Analysis of the polarizability and optical properties of C60. J. Phys. B 29, 5087–5113 (1996)Google Scholar
  73. 430.
    L.X. Benedict, S.G. Louie, M.L. Cohen, Static polarizabilities of single-wall carbon nanotubes. Phys. Rev. B 52, 8541–8549 (1995)Google Scholar
  74. 431.
    M.R. Pederson, T. Baruah, P.B. Allen, C. Schmidt, Density-functional-based determination of vibrational polarizabilities in molecules within the double-harmonic approximation: derivation and application. J. Chem. Theor. Comput. 1, 590–596 (2005)Google Scholar
  75. 432.
    N.G. Szwacki, A. Sadrzadeh, B.I. Yakobson, B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett. 98, 166804 (2007)Google Scholar
  76. 433.
    G. Gopakumar, M.T. Nguyen, A. Ceulemans, The boron buckyball has an unexpected Th symmetry. Chem. Phys. Lett. 450, 175–177 (2008)Google Scholar
  77. 434.
    H. Tang, S. Ismail-Beigi, Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501 (2007)Google Scholar
  78. 435.
    J.R. Friedman, M.P. Sarachik, J. Tejada, R. Ziolo, Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett. 76, 3830–3833 (1996)Google Scholar
  79. 436.
    S. Hill, J.A.A.J. Perenboom, N.S. Dalal, T. Hathaway, T. Stalcup, J.S. Brooks, High-sensitivity electron paramagnetic resonance of Mn 12-acetate. Phys. Rev. Lett. 80, 2453–2456 (1998)Google Scholar
  80. 437.
    S. Hill, S. Maccagnano, K. Park, R.M. Achey, J.M. North, N.S. Dalal, Detailed single-crystal EPR line shape measurements for the single-molecule magnets Fe 8 Br and Mn 12-acetate. Phys. Rev. B 65, 224410 (2002)Google Scholar
  81. 438.
    E.M. Chudnovsky, D.A. Garanin, Spin tunneling via dislocations in Mn12 acetate crystals. Phys. Rev. Lett. 87, 187203 (2001)Google Scholar
  82. 439.
    D.A. Garanin, E.M. Chudnovsky, Dislocation-induced spin tunneling in Mn 12 acetate. Phys. Rev. B 65, 094423 (2002)Google Scholar
  83. 440.
    A. Cornia, R. Sessoli, L. Sorace, D. Gatteschi, A.L. Barra, C. Daiguebonne, Origin of second-order transverse magnetic anisotropy in Mn 12-acetate. Phys. Rev. Lett. 89, 257201 (2002)Google Scholar
  84. 441.
    S. Hill, R.S. Edwards, S.I. Jones, N.S. Dalal, J.M. North, Definitive spectroscopic determination of the transverse interactions responsible for the magnetic quantum tunneling in Mn 12-acetate. Phys. Rev. Lett. 90, 217204 (2003)Google Scholar
  85. 442.
    E. del Barco, A.D. Kent, N.E. Chakov, L.N. Zakharov, A.L. Rheingold, D.N. Hendrickson, G. Christou, Distribution of internal transverse magnetic fields in a Mn 12-based single molecule magnet. Phys. Rev. B 69, 020411(R) (2004)Google Scholar
  86. 443.
    K. Park, T. Baruah, N. Bernstein, M.R. Pederson, Second-order transverse magnetic anisotropy induced by disorder in the single-molecule magnet Mn 12. Phys. Rev. B 69, 144426 (2004)Google Scholar
  87. 444.
    W. Wernsdorfer, N. Aliaga-Alcalde, D.N. Hendrickson, G. Christou, Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets. Nature 416, 406–409 (2002)Google Scholar
  88. 445.
    K. Park, M.R. Pederson, S.L. Richardson, N. Aliaga-Alcalde, G. Christou, Density-functional theory calculation of the intermolecular exchange interaction in the magnetic Mn 4 dimer. Phys. Rev. B 68, 020405(R) (2003)Google Scholar
  89. 446.
    J. Kortus, C.S. Hellberg, M.R. Pederson, Hamiltonian of the V 15 spin system from first-principles density-functional calculations. Phys. Rev. Lett. 86, 3400–3403 (2001)Google Scholar
  90. 447.
    L.H. Yu, Z.K. Keane, J.W. Ciszek, L. Cheng, J.M. Tour, T. Baruah, M.R. Pederson, D. Natelson, Kondo resonances and anomalous gate dependence in the electrical conductivity of single-molecule transistors. Phys. Rev. Lett. 95, 256803 (2005)Google Scholar
  91. 448.
    D. Wegner, R. Yamachika, X. Zhang, Y. Wang, T. Baruah, M.R. Pederson, B.M. Bartlett, J.R. Long, M.F. Crommie, Tuning molecule-mediated spin coupling in bottom-up-fabricated vanadium-tetracyanoethylene nanostructures. Phys. Rev. Lett. 103, 087205 (2009)Google Scholar
  92. 449.
    M. Green, Third Generation Photovolsaics: Advanced Solar Energy Conversion (Springer, Berlin, 2004)Google Scholar
  93. 450.
    P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111, 2834–2860 (2007)Google Scholar
  94. 451.
    B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films. Nature 353, 737–740 (1991)Google Scholar
  95. 452.
    M. Gratzel, Photoelectrochemical cells. Nature 414, 338–344 (2001)Google Scholar
  96. 453.
    P.A. Liddell, D. Kuciauskas, J.P. Sumida, B. Nash, D. Nguyen, A.L. Moore, T.A. Moore, D. Gust, Photoinduced charge separation and charge recombination to a triplet state in a carotene-porphyrin-fullerene triad. J. Am. Chem. Soc. 119, 1400–1405 (1997)Google Scholar
  97. 454.
    D. Carbonera, M. Di Valentin, C. Corvaja, G. Agostini, G. Giacometti, P.A. Liddell, D. Kuciauskas, A.L. Moore, T.A. Moore, D. Gust, EPR investigation of photoinduced radical pair formation and decay to a triplet state in a carotene-porphyrin-fullerene triad. J. Am. Chem. Soc. 120, 4398–4405 (1998)Google Scholar
  98. 455.
    T. Baruah, M.R. Pederson, Density functional study on a light-harvesting carotenoid-porphyrin-C 60 molecular triad. J. Chem. Phys. 125, 164706 (2006)Google Scholar
  99. 456.
    N. Spallanzani, C.A. Rozzi, D. Varsano, T. Baruah, M.R. Pederson, F. Manghi, A. Rubio, Photo-excitation of a light-harvesting supra-molecular triad: a time-dependent DFT study. J. Phys. Chem. B 113, 5345–5349 (2009)Google Scholar
  100. 457.
    G. Kodis, P.A. Liddell, A.L. Moore, T.A. Moore, D. Gust, Synthesis and photochemistry of a carotene-porphyrin-fullerene model photosynthetic reaction center. Phys. Org. Chem. 17, 724–734 (2004)Google Scholar
  101. 458.
    S. Vasudevan, N. Kapur, T. He, M. Neurock, J.M. Tour, A.W. Ghosh, Controlling transistor threshold voltages using molecular dipoles. J. Appl. Phys. 105, 093703 (2009)Google Scholar
  102. 459.
    N.D. Lang, Resistance of atomic wires. Phys. Rev. B 52, 5335–5342 (1995)Google Scholar
  103. 460.
    K. Hirose, M. Tsukada, First-principles calculation of the electronic structure for a bielectrode junction system under strong field and current. Phys. Rev. B 51, 5278–5290 (1995)Google Scholar
  104. 461.
    W.G. Aulbur, L. Jonsson, J.W. Wilkins, Quasiparticle calculations in solids original research article. Solid State Phys. 54, 1–218 (1999)Google Scholar
  105. 462.
    D. Kienle, J.I. Cerda, A.W. Ghosh, Extended Huckel theory for band structure, chemistry, and transport. I. Carbon nanotubes. J. Appl. Phys. 100, 043714 (2006)Google Scholar
  106. 463.
    D. Kienle, K.H. Bevan, G.-C. Liang, L. Siddiqui, J.I. Cerda, A.W. Ghosh, Extended Huckel theory for band structure, chemistry, and transport. II. Silicon. J. Appl. Phys. 100, 043715 (2006)Google Scholar
  107. 464.
    Th. Frauenheim, G. Seifert, M. Elsterner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, R. Scholz, A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics. Chem. Biol. Phys. Status Solidi B 217, 41–62 (1999)Google Scholar
  108. 465.
    M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)Google Scholar
  109. 466.
    A. Arnold, F. Weigend, F. Evers, Quantum chemistry calculations for molecules coupled to reservoirs: formalism, implementation, and application to benzenedithiol. J. Chem. Phys. 126, 174101 (2007)Google Scholar
  110. 467.
    F. Evers, F. Weigend, M. Koentopp, Conductance of molecular wires and transport calculations based on density-functional theory. Phys. Rev. B 69, 235411 (2004)Google Scholar
  111. 468.
    G.-C. Liang, A.W. Ghosh, Identifying contact effects in electronic conduction through C 60 on silicon. Phys. Rev. Lett. 95, 076403 (2005)Google Scholar
  112. 469.
    N. Lorente, M. Persson, L.J. Lauhon, W. Ho, Symmetry selection rules for vibrationally inelastic tunneling. Phys. Rev. Lett. 86, 2593–2596 (2001)Google Scholar
  113. 470.
    M.-L. Bocquet, H. Lesnard, N. Lorente, Inelastic spectroscopy identification of STM-induced benzene dehydrogenation. Phys. Rev. Lett. 96, 096101 (2006)Google Scholar
  114. 471.
    M. Koentopp, K. Burke, F. Evers, Zero-bias molecular electronics: exchange-correlation corrections to Landauer’s formula. Phys. Rev. B 73, 121403 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Natalya A. Zimbovskaya
    • 1
  1. 1.Department of Physics and ElectronicsUniversity of Puerto Rico at HumacaoHumacaoUSA

Personalised recommendations