• Galina NovikEmail author
  • Anastasiya Sidarenka
  • Elena Kiseleva
  • Emily Kolomiets
  • Estera Szwajcer Dey


Probiotics are defined as “live microorganisms that, when administrated in adequate amounts, confer a health benefit on the host”. Bacterial strains selected as probiotics are predominantly from the genera, Bifidobacterium and Lactobacillus, which are indigenous to the human gastrointestinal tract. Probiotic bacteria are selected for potential application on the basis of particular physiological, biochemical and technological properties. The classification and identification of probiotic strains may give a strong indication of their safety and technical applicability; thus, probiotic bacteria have to be accurately identified and characterised at least at the species level. Safety and functionality screening also plays an important role in selection of probiotic straints for human use. Extensive investigations of biological active compounds from probiotic bacteria are directed primarily for the preparation of highly effective therapeutic products. Among these substances are bacterial polysaccharides and polar lipids. The general results of chemical, NMR and serological studies indicate the structural heterogeneity of the surface polysaccharides, which in turn might influence their biological activity, namely, the antigenicity. Current research on biological active compounds from probiotic bacteria is also directed at the elaboration of glycoconjugates products. By employing of new modification of supercritical fluid of carbon dioxide (scCO2), polar lipids of lactic acid bacteria and bifidobacteria can be very effectively extracted. The role of biological active components from probiotic bacteria in treatment and prevention of autoimmune diseases, as well as their possible involvement in pathogenesis of autoimmune thyroid disease and celiac disease by the mechanism of molecular mimicry, was revealed. In prospect, the scCO2 isolation technology of probiotic glycoconjugates may be combined with metabolic engineering and immunological studies in technologies aimed at manufacturing of highly effective therapeutic products.


Lactic Acid Bacterium Tight Junction Dextran Sodium Sulphate Probiotic Bacterium Probiotic Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adam MR (1999) Safety of industrial lactic acid bacteria. J Biotechnol 68(2–3):171–178. doi: 10.1016/S0168-1656(98)00198-9 CrossRefGoogle Scholar
  2. Alakomi HL, Skytta E, Saarela M et al (2000) Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66(5):2001–2005. doi: 10.1128/AEM.66.5.2001-2005.2000 CrossRefGoogle Scholar
  3. Altenhoefer A, Oswald S, Sonnenborn U et al (2004) The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol Med Microbiol 40(3):223–229. doi: 10.1016/S0928-8244(03)00368-7 CrossRefGoogle Scholar
  4. Ammor MS, Flórez AB, van Hoek AH et al (2008) Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. J Mol Microbiol Biotechnol 14(1–3):6–15. doi: 10.1159/000106077 CrossRefGoogle Scholar
  5. Anderson RC, Cookson AL, McNabb WC et al (2010) Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol 10:316–326. doi: 10.1186/1471-2180-10-316 CrossRefGoogle Scholar
  6. Antikainen J, Anton L, Sillanpää J, Korhonen TK et al (2002) Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly. Mol Microbiol 46(2):381–394. doi: 10.1046/j.1365-2958.2002.03180.x CrossRefGoogle Scholar
  7. Antikainen J, Kaparinen V, Korhonen TK (2007a) Enolases from Gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits. FEMS Immunol Med Microbiol 51(3):526–534. doi: 10.1111/j.1574-695X.2007.00330.x CrossRefGoogle Scholar
  8. Antikainen J, Kuparinen V, Lähteenmäki K et al (2007b) pH-dependent association of enolase and glyceraldehydes-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids. J Bacteriol 189(12):4539–4543. doi: 10.1128/JB.00378-07 CrossRefGoogle Scholar
  9. Atuma C, Strugala V, Allen A, Holm L (2001) The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 280(5):G922-G929Google Scholar
  10. Ävall-Jääskeläinen S, Palva A (2005) Lactobacillus surface layers and their applications. FEMS Microbiol Rev 29(3):511–529. doi: 10.1016/j.femsre.2005.04.003 CrossRefGoogle Scholar
  11. Ayabe T, Satchell DP, Wilson CL et al (2000) Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 1(2):113–118. doi: 10.1038/77783 CrossRefGoogle Scholar
  12. Baccigalupi L, Di Donato A, Parlato M et al (2005) Small surface-associated factors mediate adhesion of a food-isolated strain of Lactobacillus fermentum to Caco-2 cells. Res Microbiol 156(7):830–836. doi: 10.1016/j.resmic.2005.05.001 CrossRefGoogle Scholar
  13. Backhead F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1919. doi: 10.1126/science.1104816 CrossRefGoogle Scholar
  14. Bamba T, Kanauchi O, Andoh A, Fujiyama Y (2002) A new prebiotic from germinated barley for nutraceutical treatment of ulcerative colitis. J Gastroenterol Hepatol 17(8):818–824. doi: 10.1046/j.1440-1746.2002.02709.x CrossRefGoogle Scholar
  15. Benchimol EI, Mack DR (2005) Safety issues of probiotic ingestion. Pract Gastroenterol 29(11):23–34Google Scholar
  16. Bergamini CV, Hynes ER, Quiberoni A et al (2005) Probiotic bacteria as adjunct starters: influence of the addition methodology on their survival in a semi-hard Argentinean cheese. Food Res Int 38(5):597–604. doi: 10.1016/j.foodres.2004.11.013 CrossRefGoogle Scholar
  17. Bergonzelli G, Granato D, Pridmore R et al (2006) GroEL of Lactobacillus johnsonii La1 (NCC533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 74(1):425–434. doi: 10.1128/IAI.74.1.425-434.2006 CrossRefGoogle Scholar
  18. Bernet MF, Brassart D, Neeser JR et al (1993) Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions. Appl Environ Microbiol 59(12):4121–4128Google Scholar
  19. Berrada N, Lemeland JE, Laroche G et al (1991) Bifidobacterium from fermented milks: survival during gastric transit. J Dairy Sci 74(2):409–413. doi: 10.3168/jds.S0022-0302(91)78183-6 CrossRefGoogle Scholar
  20. Berthier F, Ehrlich SD (1998) Rapid species identification within two groups of closely related lactobacilli using PCR primers that target the 16S/23S rRNA spacer region. FEMS Microbiol Lett 161(1):97–106. doi: 10.1111/j.1574-6968.1998.tb12934.x CrossRefGoogle Scholar
  21. Betoret E, Betoret N, Vidal D, Fito P (2011) Functional food development: trends and technologies. Trends Food Sci Technol 22(9):498–508. doi: 10.1016/j.tifs.2011.05.004 CrossRefGoogle Scholar
  22. Bevilacqua L, Ovidi M, Di Mattia E et al (2003) Screening of Bifidobacterium strains isolated from human faeces for antagonistic activities against potentially bacterial pathogens. Microbiol Res 158(2):179–185. doi: 10.1078/0944-5013-00192 CrossRefGoogle Scholar
  23. Bevins CL (2004) The Paneth cell and the innate immune response. Curr Opin Gastroenterol 20(6):572–580. doi: 10.1097/00001574-200411000-00012 CrossRefGoogle Scholar
  24. Bhadoria PBS, Mahapatra SC (2011) Prospects, technological aspects and limitations of probiotics—a worldwide review. Eur J Food Res Rev 1(2):23–42Google Scholar
  25. Biavati B, Mattarelli P (2006) The family Bifidobacteriaceae. In: Dworkin M (ed) The Procariotes: a handbook on the biology of bacteria, vol 3, 3rd edn. Springer, New-York, pp 322–382Google Scholar
  26. Biavati B, Vescovo M, Torriani S, Bottazzi V (2001) Bifidobacteria: history, ecology, physiology and applications. Ann Microbiol 50(2):117–131Google Scholar
  27. Blazquez J, Oliver A, Gomea-Gomez JM (2002) Mutation and evolution of antibiotic resistance: antibiotics as promoters of antibiotic resistance? Curr Drug Targets 3(4):345–349. doi: 10.2174/1389450023347579 CrossRefGoogle Scholar
  28. Borruel N, Carol M, Casellas F et al (2002) Increased mucosal tumour necrosis factor alpha production in Crohn’s disease can be downregulated ex vivo by probiotic bacteria. Gut 51(5):659–664. doi: 10.1136/gut.51.5.659 CrossRefGoogle Scholar
  29. Boudeau J, Glasser AL, Julien S et al (2003) Inhibitory effect of probiotic Escherichia coli strain Nissle 1917 on adhesion to and invasion of intestinal epithelial cells by adherent-invasive E. coli strains isolated from patients with Crohn’s disease. Aliment Pharmacol Ther 18(1):45–56. doi: 10.1046/j.1365-2036.2003.01638.x CrossRefGoogle Scholar
  30. Boyd MA, Antonio MAD, Hillier SL (2005) Comparison of API 50 CH strips to whole chromosomal DNA probes for the identification of Lactobacillus species. J Clin Microbiol 43(10):5309–5311. doi: 10.1128/JCM.43.10.5309-5311.2005 CrossRefGoogle Scholar
  31. Buck BL, Altermann E, Svingerud T et al (2005) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71(12):8344–8351. doi: 10.1128/AEM.71.12.8344-8351.2005 CrossRefGoogle Scholar
  32. Caballero-Franco C, Keller K, De Simone C et al (2007) The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 292(1):G315–G322CrossRefGoogle Scholar
  33. Candela M, Biagi E, Centanni M et al (2009) Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. Microbiology 155(10):3294–3303. doi: 10.1099/mic.0.028795-0 CrossRefGoogle Scholar
  34. Candela M, Centanni M, Fiori J et al (2010) DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts. Microbiology 156(6):1609–1618. doi: 10.1099/mic.0.038307-0 CrossRefGoogle Scholar
  35. Canzi E, Guglielmetti S, Mora D et al (2005) Conditions affecting cell surface properties of human intestinal bifidobacteria. Antonie Van Leeuwenhoek 88(3–4):207–219. doi: 10.1007/s10482-005-6501-3 CrossRefGoogle Scholar
  36. Cario E (2005) Bacterial interactions with cells of the intestinal mucosa: toll-like receptors and NOD2. Gut 54(8):1182–1193. doi: 10.1136/gut.2004.062794 CrossRefGoogle Scholar
  37. Casey PG, Gardiner GE, Casey G et al (2007) A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica Serovar typhimurium. Appl Environ Microbiol 73(6):1858–1863. doi: 10.1136/gut.2004.062794 CrossRefGoogle Scholar
  38. Charalampopoulos D, Pandiella SS, Webb C (2002a) Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates. J Appl Microbiol 92(5):851–859. doi: 10.1046/j.1365-2672.2002.01592.x CrossRefGoogle Scholar
  39. Charalampopoulos D, Wang R, Pandiella SS, Webb C (2002b) Application of cereals and cereal components in functional foods: a review. Int J Food Microbiol 79(1–2):131–141CrossRefGoogle Scholar
  40. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Antibiotic susceptibility of potentially probiotic Bifidobacterium isolates from the human gastrointestinal tract. Lett Appl Microbiol 26(5):333–337. doi: 10.1046/j.1472-765X.1998.00342.x CrossRefGoogle Scholar
  41. Cheikhyoussef A, Pogori N, Chen W et al (2008) Antimicrobial proteinaceous compounds obtained from bifidobacteria: from production to their application. Int J Food Microbiol 125(3):215–222. doi: 10.1016/j.ijfoodmicro.2008.03.012 CrossRefGoogle Scholar
  42. Chen X, Xu J, Shuai J et al (2007) The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium. Int J Food Microbiol 115(3):307–312. doi: 10.1016/j.ijfoodmicro.2006.11.007 CrossRefGoogle Scholar
  43. Chen X, Tian F, Liu X et al (2010) In vitro screening of lactobacilli with antagonistic activity against Helicobacter pylori from traditionally fermented foods. J Dairy Sci 93(12):5627–5634. doi: 10.3168/jds.2010-3449 CrossRefGoogle Scholar
  44. Chiba H, Osanai M, Murata M et al (2008) Transmembrane proteins of tight junctions. Biochim Biophys Acta 1778(3):588–600CrossRefGoogle Scholar
  45. Chin AC, Teoh DA, Scott KGE et al (2002) Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect Immun 70(7):3673–3680. doi: 10.1128/IAI.70.7.3673-3680.2002 CrossRefGoogle Scholar
  46. Cleusix V, Lacroix C, Vollenweider S et al (2008) Glycerol induces reuterin production and decreases Escherichia coli population in an in vitro model of colonic fermentation with immobilized human feces. FEMS Microbiol Ecol 63(1):56–64. doi: 10.1111/j.1574-6941.2007.00412.x CrossRefGoogle Scholar
  47. Coconnier MH, Lievin V, Lorrot M, Servin AL (2000) Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica serovar typhimurium infecting human enterocyte-like Caco-2/TC-7 cells. Appl Environ Microbiol 66(3):1152–1157. doi: 10.1128/AEM.66.3.1152-1157.2000 CrossRefGoogle Scholar
  48. Collado MC, Sanz Y (2006) Method for direct selection of potentially probiotic Bifidobacterium strains from human feces based on their acid-adaptation ability. J Microbiol Methods 66(3):560–563. doi: 10.1016/j.mimet.2006.01.007 CrossRefGoogle Scholar
  49. Collado MC, Hernández M, Sanz Y (2005) Production of bacteriocin-like inhibitory compounds by human fecal Bifidobacterium strains. J Food Prot 68(5):1034–1040Google Scholar
  50. Collado MC, Meriluoto J, Sa S (2007) Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 45(4):454–460. doi: 10.1111/j.1472-765X.2007.02212.x CrossRefGoogle Scholar
  51. Corr SC, Li Y, Riedel CU et al (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A 104(18):7617–7621. doi: 10.1073/pnas.0700440104 CrossRefGoogle Scholar
  52. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3(10):777–788. doi: 10.1038/nrmicro1273 CrossRefGoogle Scholar
  53. Crittenden R (2004) An update on probiotic bifidobacteria. In: Salminen S, Von Wright A, Ouwehand A (eds) Lactic acid bacteria: microbiological and functional aspects, 3rd edn. Marcel Dekker, New York, pp 125–157Google Scholar
  54. Crittenden R, Laitila A, Forssell P et al (2001) Adhesion of bifidobacteria to granular starch and its implications in probiotic technologies. Appl Environ Microbiol 67:3469–3475. doi: 10.1128/AEM.67.8.3469-3475.2001 CrossRefGoogle Scholar
  55. Cunliffe RN (2003) Alpha-defensins in the gastrointestinal tract. Mol Immunol 40(7):463–467CrossRefGoogle Scholar
  56. Danielsen M (2002) Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. Plasmid 48(2):98–103. doi: 10.1016/S0147-619X(02)00118-X CrossRefGoogle Scholar
  57. Das H, Singh SK (2004) Useful byproducts from cellulosic wastes of agriculture and food industry—a critical appraisal. Crit Rev Food Sci Nutr 44(2):77–89. doi: 10.1080/10408690490424630 CrossRefGoogle Scholar
  58. De Keersmaecker SCJ, Verhoeven TLA, Desair J et al (2006) Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol Lett 259(1):89–96. doi: 10.1111/j.1574-6968.2006.00250.x CrossRefGoogle Scholar
  59. De Las Rivas B, Marcobal A, Munoz R (2006) Development of a multilocus sequence typing meted for analysis of Lactobacillus plantarum strains. Microbiology 52:85–93. doi: 10.1099/mic.0.28482-0 CrossRefGoogle Scholar
  60. De Leeuw E, Li X, Lu W (2006) Binding characteristics of the Lactobacillus brevis ATCC 8287 surface layer to extracellular matrix proteins. FEMS Microbiol Lett 260(2):210–215. doi: 10.1111/j.1574-6968.2006.00313.x CrossRefGoogle Scholar
  61. De Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 111:1–66. doi: 10.1007/10_2008_097 Google Scholar
  62. De Vries W, Stouthamer AH (1969) Factors determining the degree of anaerobiosis of Bifidobacterium strains. Arch Microbiol 65(3):275–287. doi: 10.1007/BF00407109 Google Scholar
  63. De Vuyst L (2000) Application of functional starter cultures. Food Technol Biotech 38(2):105–112Google Scholar
  64. Delves-Broughton J, Blackburn P, Evans RJ et al (1996) Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69(2):193–202. doi: 10.1007/BF00399424 CrossRefGoogle Scholar
  65. Diancourt L, Passet V, Chervaux C et al (2007) Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination. Appl Environ Microbiol 73(20):6601–6611. doi: 10.1128/AEM.01095-07 CrossRefGoogle Scholar
  66. Doleyres Y, Lacroix C (2005) Technologies with free and immobilized cells for probiotic bifidobacteria production and protection. Int Dairy J 15(10):973–988. doi: 10.1016/j.idairyj.2004.11.014 CrossRefGoogle Scholar
  67. Donato KA, Gareau MG, Wang YJ et al (2010) Lactobacillus rhamnosus GG attenuates interferon-γ and tumour necrosis factor-α-induced barrier dysfunction and pro-inflammatory signaling. Microbiology 156(11):3288–3297. doi: 10.1099/mic.0.040139-0 CrossRefGoogle Scholar
  68. Dong X, Xin Y, Jian W et al (2000) Bifidobacterium thermacidophilum sp. nov., isolated from an anaerobic digester. Int J Syst Evol Microbiol 50(1):119–125. doi: 10.1099/00207713-50-1-119 CrossRefGoogle Scholar
  69. Dongowski G, Huth M, Gebhardt E, Flamme W (2002) Dietary fiber-rich barley products beneficially affect the intestinal tract of rats. J Nutr 132(12):3704–3714Google Scholar
  70. Drider D, Fimland G, Hechard Y et al (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70(2):564–582. doi: 10.1128/MMBR.00016-05 CrossRefGoogle Scholar
  71. Du Plessis EM, Dicks LM (1995) Evaluation of random amplified polymorphic DNA (RAPD)-PCR as a method to differentiate Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus amylovorus, Lactobacillus gallinarum, Lactobacillus gasseri, and Lactobacillus johnsonii. Curr Microbiol 31(2):114–118. doi: 10.1007/BF00294286 CrossRefGoogle Scholar
  72. Dunne C, Murphy L, Flynn S et al (1999) Probiotics: from myth to reality. Demonstration of functionality on animal models of disease and in human clinical trials. Antonie Van Leeuwenhoek 76(1–4):279–292CrossRefGoogle Scholar
  73. Ewaschuk JB, Diaz H, Meddings L et al (2008) Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 295(5):G1025–G1034. doi: 10.1152/ajpgi.90227.2008 CrossRefGoogle Scholar
  74. Fanning AS, Jameson BJ, Jesaitis LA et al (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273(45):29745–29753. doi: 10.1074/jbc.273.45.29745 CrossRefGoogle Scholar
  75. FAO/WHO Food and Agriculture Organization of the United Nations/World Health Organization (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. In: Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, cуrdoba, 1–4 October 2001.
  76. FAO/WHO Food and Agriculture Organization of the United Nations/World Health Organization (2002) Guidelines for the evaluation of probiotics in food. In: Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food, London, Ontario, Canada, 30 April–1 May, 2002.
  77. FAO/WHO Food and Agriculture Organization of the United Nations/World Health Organization (2007) Compendium of food additive specifications. In: FAO JECFA monographs. 68th meeting of joint FAO/WHO Expert Committee on Food Additives, Rome, 2007.
  78. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17(2):375–412CrossRefGoogle Scholar
  79. Fasoli S, Marzotto M, Rizzotti L et al (2003) Bacterial composition of commercial probiotics products as evaluated by PCR-DGGE analysis. Int J Food Microbiol 82(1):59–70. doi: 10.1016/S0168-1605(02)00259-3 CrossRefGoogle Scholar
  80. Felis E, Dellaglio F (2007) Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microb 8(2):44–61Google Scholar
  81. Felis GE, Dellaglio L, Mizzi L, Torriani S (2001) Comparative sequence analysis of recA gene fragment brings new evidence for a change in the taxonomy of the Lactobacillus casei group. Int J Syst Evol Microbiol 51(6):2113–2117CrossRefGoogle Scholar
  82. Fernandez MF, Boris S, Barbes C (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol 94(3):449–455. doi: 10.1046/j.1365-2672.2003.01850.x CrossRefGoogle Scholar
  83. Fimland N, Rogne P, Fimland G et al (2008) Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin plantaricin EF. Biochim Biophys Acta 1784(11):1711–1719. doi: 10.1016/j.bbapap.2008.05.003 CrossRefGoogle Scholar
  84. Fons M, Hege T, Ladire M et al (1997) Isolation and characterization of a plasmid from Lactobacillus fermentum conferring erythromycin resistance. Plasmid 37(3):199–203. doi: 10.1006/plas.1997.1290, DOI:10.1006%2fplas.1997.1290CrossRefGoogle Scholar
  85. Fox GE, Wisotzkey JD, Jurtshuk PJ (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42(1):166–170. doi: 10.1099/00207713-42-1-166 CrossRefGoogle Scholar
  86. Fujita H, Eish Y, Ishige I et al (2002) Quantitative analysis of bacterial DNA from Mycobacteria spp., Bacteroides vulgatus, and Escherichia coli in tissue samples from patients with inflammatory bowel diseases. J Gastroenterol 37(7):509–516. doi: 10.1007/s005350200079 CrossRefGoogle Scholar
  87. Fukushima K, Sasaki I, Ogawa H et al (1999) Colonization of microflora in mice: mucosal defense against luminal bacteria. J Gastroenterol 34(1):54–60. doi: 10.1007/s005350050216 CrossRefGoogle Scholar
  88. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66(5):365–378. doi: 10.1111/j.1365-2672.1989.tb05105.x CrossRefGoogle Scholar
  89. Galdeano CM, de Moreno de LeBlanc A, Vinderola G et al (2007) Proposed model: mechanisms of immunomodulation induced by probiotic bacteria. Clin Vaccine Immunol 14(5):485–492. doi: 10.1128/CVI.00406-06 Google Scholar
  90. Gardiner GE, Rea MC, O’Riordan B et al (2007) Fate of the two-component lantibiotic lacticin 3147 in the gastrointestinal tract. Appl Environ Microbiol 73(21):7103–7109. doi: 10.1128/AEM.01117-07 CrossRefGoogle Scholar
  91. Gaudier E, Michel C, Segain JP et al (2005) The VSL#3 probiotic mixture modifies microflora but does not heal chronic dextran sodium sulfate-induced colitis or reinforce the mucus barrier in mice. J Nutr 135(12):2753–2761Google Scholar
  92. Gevers D, Danielson M, Huys G, Swings J (2002) Molecular characterization of tet (M) genes in Lactobacillus isolates from different types of fermented dry sausage. Appl Environ Microbiol 69(2):1270–1275. doi: 10.1128/AEM.69.2.1270-1275.2003 CrossRefGoogle Scholar
  93. Gevers D, Huys G, Swings J (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205(1):31–36. doi: 10.1111/j.1574-6968.2001.tb10921.x CrossRefGoogle Scholar
  94. Ghadimi D, Vrese MD, Heller KJ et al (2010) Effect of natural commensal-origin DNA on toll-like receptor 9 (TLR9) signaling cascade, chemokine IL-8 expression, and barrier integrity of polarized intestinal epithelial cells. Inflamm Bowel Dis 16(3):410–427. doi: 10.1002/ibd.21057 CrossRefGoogle Scholar
  95. Gibson GR, Fuller R (2000) Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. J Nutr 130:391–395Google Scholar
  96. Gillor O, Etzion A, Riley MA (2008) The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol 81(4):591–606. doi: 10.1007/s00253-008-1726-5 CrossRefGoogle Scholar
  97. Gleinser M, Grimm V, Zhurina D et al (2012) Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA. Microb Cell Fact 11(1):80–94. doi: 10.1186/1475-2859-11-80 CrossRefGoogle Scholar
  98. Gokavi S, Zhang LW, Huang MK et al (2005) Oat-based symbiotic beverage fermented by Lactobacillus plantarum, Lactobacilus paracasei ssp. casei, and Lactobacillus acidophilus. J Food Sci 70(4):M216–M223. doi: 10.1111/j.1365-2621.2005.tb07191.x CrossRefGoogle Scholar
  99. Gomes AM, Malcata FX (1999) Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci Technol 10(4):139–157. doi: 10.1016/S0924-2244(99)00033-3l CrossRefGoogle Scholar
  100. Grabig A, Paclik D, Guzy C et al (2006) Escherichia coli strain Nissle 1917 ameliorates experimental colitis via Toll-like receptor 2- and Toll-like receptor 4- dependent pathways. Infect Immun 74(7):4075–4082. doi: 10.1128/IAI.01449-05 CrossRefGoogle Scholar
  101. Granato D, Bergonzelli GE, Pridmore RD et al (2004) Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72(4):2160–2169. doi: 10.1128/IAI.72.4.2160-2169.2004 CrossRefGoogle Scholar
  102. Gueimonde M, Flórez AB, van los Hoek AHAM et al (2010) Genetic basis of tetracycline resistance in Bifidobacterium animalis subsp. lactis. Appl Environ Microbiol 76(10):3364–3369. doi: 10.1128/AEM.03096-09 CrossRefGoogle Scholar
  103. Gueimonde M, Sanchez B (2012) Enhancing probiotic stability in industrial processes. Microb Ecol Health Dis 23:18562–18565Google Scholar
  104. Guglielmetti S, Tamagnini I, Minuzzo M et al (2009) Study of the adhesion of Bifidobacterium bifidum MIMBb75 to human intestinal cell lines. Curr Microbiol 59(2):167–172. doi: 10.1007/s00284-009-9415-x CrossRefGoogle Scholar
  105. Gupta P, Andrew H, Kirschner BS et al (2000) Is Lactobacillus GG helpful in children with Crohn’s disease? Results of a preliminary, open–label study. J Pediatr Gastroenterol Nutr 31(4):453–457. doi: 10.1097/00005176-200010000-00024CrossRefGoogle Scholar
  106. Hammes WP, Hertel C (2003) The genera Lactobacillus and Carnobacterium. In: Dworkin M (ed) Procariotes, vol 4, 3rd edn. Springer, New-York, pp 320–403Google Scholar
  107. Hammes WP, Vogel RF (1995) The genus Lactobacillus. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria, vol 2. Blackie Academic and Professional, Glasgow, pp 19–54CrossRefGoogle Scholar
  108. Hanada M, Feng J, Hemmings BA (2004) Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochim Biophys Acta 1697(1):3–16. doi: 10.1016/j.bbapap.2003.11.009 Google Scholar
  109. Hart AL, Lammers K, Brigidi P et al (2004) Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 53(11):1602–1609. doi: 10.1136/gut.2003.037325 CrossRefGoogle Scholar
  110. Heinemann C, Vlieg JETV, Janssen DB et al (2000) Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiol Lett 190(1):177–180. doi: 10.1016/S0378-1097(00)00331-1 CrossRefGoogle Scholar
  111. Helander A, Hansson GC, Svennerholm AM (1997) Binding of enterotoxigenic Escherichia coli to isolated enterocytes and intestinal mucus. Microb Pathog 23(6):335–346. doi: 10.1006/mpat.1997.0163 CrossRefGoogle Scholar
  112. Holzapfel WH, Haberer P, Geisen R et al (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73(2):365S–373SGoogle Scholar
  113. Hooper LV, Stappenbeck TS, Hong CV et al (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4(3):269–273. doi: 10.1038/ni888 CrossRefGoogle Scholar
  114. Hooper LV, Wong MH, Thelin A et al (2001) Molecular analysis of commensal host–microbial relationships in the intestine. Science 291(5505):881–884. doi: 10.1126/science.291.5505.881l CrossRefGoogle Scholar
  115. Hosono A, Lee J, Ametani A et al (1997) Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Biosci Biotechnol Biochem 61(2):312–331CrossRefGoogle Scholar
  116. Hurmalainen V, Edelman S, Antikainen J et al (2007) Extracellular proteins of Lactobacillus crispatus enhance activation of human plasminogen. Microbiology 153(4):1112–1122. doi: 10.1099/mic.0.2006/000901-0 CrossRefGoogle Scholar
  117. Ishikawa H, Akedo I, Umesaki Y et al (2003) Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis. J Am Coll Nutr 22(1):56–63. doi: 10.1016/S0016-5085(00)85259-2 CrossRefGoogle Scholar
  118. Ishiwaki N, Muruyama H, Awayama H et al (2000) Development of high value uses of spent grain by fractionation technology. MBAA Tech Quar 37(2):261–265Google Scholar
  119. Izhyk A, Novik G, Szwajcer Dey E (2012) Extraction of polar lipids from bifidobacteria by supercritical carbon dioxide (scCO2). J Supercrit Fluids 62:149–154. doi: 10.1016/j.supflu.2011.10.013 CrossRefGoogle Scholar
  120. Janer C, Arigoni F, Lee BH et al (2005) Enzymatic ability of Bifidobacterium animalis subsp. lactis to hydrolyze milk proteins: identification and characterization of endopeptidase O. Appl Environ Microbiol 71(12):8460–8465. doi: 10.1128/AEM.71.12.8460-8465.2005 CrossRefGoogle Scholar
  121. Jeffery CJ (2009) Moonlighting proteins—an update. Mol Biosyst 5(4):345–350. doi: 10.1039/b900658n CrossRefGoogle Scholar
  122. Jian W, Zhu L, Dong X (1991) New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences. Int J Syst Bacteriol 41:548–557CrossRefGoogle Scholar
  123. Jimenez-Diaz R, Rios-Sanchez RM, Desmazeaud M et al (1993) Plantaricin S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO 10 isolated from a green olive fermentation. Appl Environ Microbiol 59(5):1416-1424Google Scholar
  124. Johnson-Henry KC, Hagen KE, Gordonpour M et al (2007) Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157: H7 adhesion to epithelial cells. Cell Microbiol 9(2):356–367. doi: 10.1111/j.1462-5822.2006.00791.x CrossRefGoogle Scholar
  125. Jönsson K, Guo B, Monstein H-J et al (2004) Molecular cloning and characterization of two Helicobacter pylori genes coding for plasminogen-binding proteins. Proc Natl Acad Sci USA 101(7):1852–1857. doi: 10.1073/pnas.0307329101 CrossRefGoogle Scholar
  126. Kainulainen V, Loimaranta V, Pekkala A et al (2012) Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by cathelicidin LL-37. J Bacteriol 194(10):2509–2519. doi: 10.1128/JB.06704-11 CrossRefGoogle Scholar
  127. Kanauchi O, Fujiyama Y, Mitsuyama K et al (1999) Increased growth of Bifidobacterium and Eubacterium by germinated barley foodstuff, accompanied by enhanced butyrate production in healthy volunteers. Int J Mol Med 3(2):175–179Google Scholar
  128. Kanauchi O, Serizawa I, Araki Y et al (2003) Germinated barley foodstuff, a prebiotic product, ameliorates inflammation of colitis through modulation of the enteric environment. J Gastroenterol 38(2):134–141CrossRefGoogle Scholar
  129. Kandler O, Weiss N (1986) Genus Lactobacillus Beijerinck 1901, 212AL. In: Holt JG (ed) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1209–1234Google Scholar
  130. Kankainen M, Paulin L, Tynkkynen S et al (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci USA 106(40):17193–17198. doi: 10.1073/pnas.0908876106 CrossRefGoogle Scholar
  131. Karczewski J, Troost FJ, Konings I et al (2010) Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 298(6):G851–G859. doi: 10.1152/ajpgi.00327.2009 CrossRefGoogle Scholar
  132. Kaufmann P, Pfefferkorn A, Teuber M, Meile L (1997) Identification and quantification of Bifidobacterium species isolated from food with genus-specific 16S rRNA-targeted probes by colony hybridization and PCR. Appl Environ Microbiol 63(4):1268–1273Google Scholar
  133. Khaled DAK, Neilan BA, Henriksson A, Conway PL (1997) Identification and phylogenetic analysis of Lactobacillus using multiplex RAPD-PCR. FEMS Microbiol Lett 153(1):191–197. doi: 10.1016/S0378-1097(97)00260-7 CrossRefGoogle Scholar
  134. Kimura K, Ito M, Amano M et al (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273(5272):245–248. doi: 10.1126/science.273.5272.245 CrossRefGoogle Scholar
  135. Kinoshita H, Wakahara N, Watanabe M et al (2008) Cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Lactobacillus plantarum LA318 recognizes human A and B blood group antigens. Res Microbiol 159(9):685–691. doi: 10.1016/j.resmic.2008.07.005 CrossRefGoogle Scholar
  136. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12(1–3):39–85. doi: 10.1016/0168-6445(93)90057-G Google Scholar
  137. Kleyn J, Hough J (1971) The microbiology of brewing. Annu Rev Microbiol 25:583–608. doi: 10.1146/annurev.mi.25.100171.003055 CrossRefGoogle Scholar
  138. Kok RG, de Waal A, Schut F et al (1996) Specific detection and analysis of a probiotic Bifidobacterium strain in infant faeces. Appl Environ Microbiol 62:3668–3672Google Scholar
  139. Koo OK, Amalaradjou MAR, Bhunia AK (2012) Recombinant probiotic expressing Listeria adhesion protein attenuates Listeria monocytogenes virulence in vitro. PLoS One 7(1):e29277. doi: 10.1371/journal.pone.0029277 CrossRefGoogle Scholar
  140. Korshunov VM, Urtaeva ZA, Smeianov VV et al (1999) The antagonistic activity of bifidobacteria in vitro and in vivo studied by using gnotobiological technology. Zh Mikrobiol Epidemiol Immunobiol 5:72–77Google Scholar
  141. Kotlowski R, Bernstein CN, Sepehri S et al (2007) High prevalence of Escherichia coli belonging to the B2 + D phylogenetic group in inflammatory bowel disease. Gut 56(5):669–675. doi: 10.1136/gut.2006.099796 CrossRefGoogle Scholar
  142. Krizova J, Spanova A, Rittich B (2008) RAPD and rep-PCR fingerprinting for characterization of Bifidobacterium species. Folia Microbiol 53(2):99–104. doi: 10.1007/s12223-008-0014-1 CrossRefGoogle Scholar
  143. Kuhbacher T, Ott SJ, Helwig U et al (2006) Bacterial and fungal microbiota in relation to probiotic therapy (VSL#3) in pouchitis. Gut 55(6):833–841. doi: 10.1136/gut.2005.078303 CrossRefGoogle Scholar
  144. Kullen MJ, Linda JB, O’Sullivan DJ (1997) Evaluation of using a short region of the recA gene for the rapid and sensitive speciation of dominant bifidobacteria in the human large intestine. FEMS Microbiol Lett 154(2):377–383. doi: 10.1016/S0378-1097(97)00356-X, DOI:10.1016%2fS0378-1097(97)00356-XCrossRefGoogle Scholar
  145. Kurdi P, Kawanishi K, Mizutani K (2006) Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J Bacteriol 188(5):1979–1986. doi: 10.1128/JB.188.5.1979-1986.2006 CrossRefGoogle Scholar
  146. Kwon HS, Yang EH, Yeon SW et al (2004) Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from16S rRNA through 23S rRNA. FEMS Microbiol Lett 239(2):267–275. doi: 10.1016/j.femsle.2004.08.049 CrossRefGoogle Scholar
  147. Lähteenmaki K, Edelman S, Korhonen TK (2005) Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends Microbiol 13(2):79–85. doi: 10.1016/j.tim.2004.12.003 CrossRefGoogle Scholar
  148. Langendijk PS, Schuts F, Jansen GJ et al (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61(8):3069–3075Google Scholar
  149. Larsen N, Michaelsen KF, Pærregaard A et al (2009) A comparative study on adhesion and recovery of potential probiotic strains of Lactobacillus spp. by in vitro assay and analysis of human colon biopsies.Microbiol Health Dis 21(2):95–99. doi: 10.1080/08910600902907632Google Scholar
  150. Lasztity R (1984) The chemistry of cereal proteins. CRC Press, Boca RatonGoogle Scholar
  151. Lauer E, Kandler O (1976) Mechanismus der variation des verhalthisses acetat/lactat bei der vergarung von glucose durch bifidobacterien. Arch Microbiol 110(2–3):271–277. doi: 10.1007/BF00690238 CrossRefGoogle Scholar
  152. Leahy SC, Higgins DG, Fitzgerald GF, van Sinderen D (2005) Getting better with bifidobacteria. J Appl Microbiol 98(6):1303–1315. doi: 10.1111/j.1365-2672.2005.02600.x CrossRefGoogle Scholar
  153. Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72(4):728–764. doi: 10.1128/MMBR.00017-08 CrossRefGoogle Scholar
  154. Leblond-Bourget N, Philippe H, Mangin I, Decaris B (1996) 16S rRNA and 16S to 23S internal transcribed spacer sequence analysis revealed inter- and intraspecific Bifidobacterium phylogeny. Int J Syst Bacteriol 46(1):102–111CrossRefGoogle Scholar
  155. Li Q, Chen Q, Hui R et al (2010) Isolation and characterisation of an oxygen, acid and bile resistant Bifidobacterium animalis subsp. lactis Qq08. J Sci Food Agric 90(8):1340–1346. doi: 10.1002/jsfa.3942 CrossRefGoogle Scholar
  156. Lillehoj EP, Hyun SW, Kim BT et al (2001) Muc1 mucins on the cell surface are adhesion sites for Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 280(1):L181–L187Google Scholar
  157. Lin CK, Tsai HC, Lin PP et al (2008) Lactobacillus acidophilus LAP5 able to inhibit the Salmonella choleraesuis invasion to the human Caco-2 epithelial cell. Anaerobe 14(5):251–255. doi: 10.1016/j.anaerobe.2008.07.003 CrossRefGoogle Scholar
  158. Ljungh Å, Wadström T (2009) Lactobacillus molecular biology: from genomics to probiotics. Caister Academic Press, NorfolkGoogle Scholar
  159. Lupp C, Finlay BB (2005) Intestinal microbiota. Curr Biol 15(7):R235–R236. doi: 10.1016/j.cub.2005.03.032 CrossRefGoogle Scholar
  160. Macías-Rodríguez ME, Zagorec M, Ascencio F et al (2009) Lactobacillus fermentum BCS87 expresses mucus- and mucin-binding proteins on the cell surface. J Appl Microbiol 107(6):1866–1874. doi: 10.1111/j.1365-2672.2009.04368.x CrossRefGoogle Scholar
  161. Mack DR, Michail S, Wei L et al (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 276(4):G941–G950Google Scholar
  162. Mack DR, Ahrne S, Hyde L et al (2003) Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52(6):827–833. doi: 10.1136/gut.52.6.827 CrossRefGoogle Scholar
  163. Madsen K, Cornish A, Soper P et al (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121(3):580–591. doi: 10.1053/gast.2001.27224 CrossRefGoogle Scholar
  164. Makras L, Triantafyllou V, Fayol-Messaoudi D et al (2006) Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar typhimurium reveals a role for lactic acid and other inhibitory compounds. Res Microbiol 157(3):241–247. doi: 10.1016/j.resmic.2005.09.002 CrossRefGoogle Scholar
  165. Maqueda M, Sánchez-Hidalgo M, Fernández M et al (2008) Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol Rev 32(1):2–22. doi: 10.1111/j.1574-6976.2007.00087.x CrossRefGoogle Scholar
  166. Marteau P, Gerhardt MF, Myara A et al (1995) Metabolism of bile salts by alimentary bacteria during transit in the human small intestine. Microb Ecol Health Dis 8(4):151–157. doi: 10.3109/08910609509140093 CrossRefGoogle Scholar
  167. Marthur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol 105(3):281–295. doi: 10.1016/j.ijfoodmicro.2005.03.008 CrossRefGoogle Scholar
  168. Masco L, Huys G, Gevers D et al (2003) Identification of Bifidobacterium species using rep-PCR fingerprinting. Syst Appl Microbiol 26(4):557–563. doi: 10.1078/072320203770865864 CrossRefGoogle Scholar
  169. Masco L, Ventura M, Zink R et al (2004) Polyphasic taxonomic analysis of Bifidobacterium animalis and Bifidobacterium lactis reveals relatedness at the subspecies level: reclassification of Bifidobacterium animalis as Bifidobacterium animalis subsp. animalis subsp. nov. and Bifidobacterium lactis as Bifidobacterium animalis subsp. lactis subsp. nov. Int J Syst Evol Microbiol 54(4):1137–1143CrossRefGoogle Scholar
  170. Masco L, Huys G, De Brandt E et al (2005) Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria. Int J Food Microbiol 102(2):221–230. doi: 10.1016/j.ijfoodmicro.2004.11.018 CrossRefGoogle Scholar
  171. Matsuki T, Watanabe K, Tanaka R et al (1999) Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol 65:4506–4512Google Scholar
  172. Matsuki T, Watanabe K, Tanaka R (2003) Genus- and species-specific PCR primers for the detection and identification of bifidobacteria. Curr Issues Intest Microb 4(2):61–69Google Scholar
  173. Matsuo K, Ota H, Akamatsu T et al (1997) Histochemistry of the surface mucous gel layer of the human colon. Gut 40(6):782–789. doi: 10.1136/gut.40.6.782 CrossRefGoogle Scholar
  174. Määttö J, Malinen E, Suihko ML et al (2004) Genetic heterogeneity and functional properties of intestinal bifidobacteria. J Appl Microbiol 97(3):459–470. doi: 10.1111/j.1365-2672.2004.02340.x CrossRefGoogle Scholar
  175. Määttö J, van Hoek AHAM, Domig KJ et al (2007) Susceptibility of human and probiotic Bifidobacterium spp. to selected antibiotics as determined by the E-test method. Int Dairy J 17(9):1123–1131. doi: 10.1016/j.idairyj.2007.01.008 CrossRefGoogle Scholar
  176. Mayrhofer S, Domig KJ, Amtmann E et al (2007) Antibiotic susceptibility of Bifidobacterium thermophilum and Bifidobacterium pseudolongum isolates from animal sources. J Food Prot 70(7):119–124Google Scholar
  177. McCartney AL, Wang W, Tannock GW (1996) Molecular analysis of the composition of bifidobacterial and lactobacillus microflora of humans. Appl Environ Microbiol 62(12):4608–4613Google Scholar
  178. Mesnage S, Fontaine T, Mignot T et al (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 19(17):4473–4484. doi: 10.1093/emboj/19.17.4473 CrossRefGoogle Scholar
  179. Millette M, Cornut G, Dupont C et al (2008) Capacity of human nisin- and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci. Appl Environ Microbiol 74(7):1997–2003. doi: 10.1128/AEM.02150-07 CrossRefGoogle Scholar
  180. Miyoshi Y, Okada S, Uchimura T, Satoh E (2006) A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci Biotechnol Biochem 70(7):1622–1628. doi: 10.1271/bbb.50688 CrossRefGoogle Scholar
  181. Mohania D, Nagpal R, Kumar M et al (2008) Molecular approaches for identification and characterization of lactic acid bacteria. J Dig Dis 9(4):190–198. doi: 10.1111/j.1751-2980.2008.00345.x CrossRefGoogle Scholar
  182. Morelli L, Cesena C, de Haën C, Gozzini L (1998) Taxonomic Lactobacillus composition of feces from human newborns during the first few days. Microb Ecol 35(2):205–212. doi: 10.1007/s002489900076 CrossRefGoogle Scholar
  183. Mori K, Yamazaki K, Ishiyama T (1997) Comparative sequence analysis of the genes coding for 16S rRNA of Lactobacillus casei-related taxa. Int J Syst Bacteriol 47(1):54–57CrossRefGoogle Scholar
  184. Mukai T, Kaneko S, Matsumoto M, Ohori H (2004) Binding of Bifidobacterium bifidum and Lactobacillus reuteri to the carbohydrate moieties of intestinal glycolipids recognized by peanut agglutinin. Int J Food Microbiol 90(3):357–362. doi: 10.1016/S0168-1605(03)00317-9 CrossRefGoogle Scholar
  185. Naaber P, Smidt I, Stsepetova J et al (2004) Inhibition of Clostridium difficile strains by intestinal Lactobacillus species. J Med Microbiol 53(6):551–554. doi: 10.1099/jmm.0.45595-0 CrossRefGoogle Scholar
  186. Nakamura J, Ito D, Nagai K et al (1997) Rapid and sensitive detection of hiochi bacteria by amplification of hiochi bacterial common antigen gene by PCR method and characterization of the antigen. J Ferment Bioeng 83(2):161–167. doi: 10.1016/S0922-338X(97)83576-3 CrossRefGoogle Scholar
  187. Nigatu A, Ahrne S, Molin G (2001) Randomly amplified polymorphic DNA (RAPD) profiles for the distinction of Lactobacillus species. Antonie Van Leeuwenhoek 79(1):1–6. doi: 10.1023/A:1010290403124 CrossRefGoogle Scholar
  188. Nissen-Meyer J, Rogne P, Oppegård C et al (2009) Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol 10(1):19–37. doi: 10.2174/138920109787048661 CrossRefGoogle Scholar
  189. Noriega L, de los Reyes-Gavilán CG, Margolles A (2005) Acquisition of bile salt resistance promotes antibiotic susceptibility changes in Bifidobacterium. J Food Prot 68(9):1916–1919Google Scholar
  190. Novik GI (1998) Structure-functional organization of bifidobacteria. Mikrobiologiia 67(3):376–383Google Scholar
  191. Novik GI, Astapovich NI, Kubler J, Gamian A (2002) Characterization of the cell-bound polysaccharides of Bifidobacterium adolescentis 94 BIM. Mikrobiologiia 71(2):173–177Google Scholar
  192. Novik GI, Astapovich NI, Samartsev AA (2001) Investigation of the physiological and biochemical characteristics of bifidobacteria at the late stages of their development. Mikrobiologiia 70(4):429–435Google Scholar
  193. Novik G, Gamian A, Cruz Francisco J, Szwajcer Dey E (2006) A novel procedure for the isolation of glycolipids from Bifidobacterium adolescentis 94 BIM using supercritical carbon dioxide. J Biotechnol 121(4):555–562. doi: 10.1016/j.jbiotec.2005.08.018 CrossRefGoogle Scholar
  194. Novik GI, Vysotskii VV (1995) Architectonics of bifidobacteria populations: submicroscopic aspect of cell cohesion in Bifidobacterium adolescentis and Bifidobacterium bifidum. Mikrobiologiia 64(2):222–227Google Scholar
  195. Novik GI, Vysotskii VV, Bogdanovskaia ZN (1994) Cellular ultrastructure of various species of the genus Bifidobacterium. Mikrobiologiia 63(3):515–522Google Scholar
  196. Novik GI, Wawrzynczyk J, Norrlow O, Szwajcer Dey E (2007) Fractions of barley spent grain as media for growth of probiotic bacteria. Mikrobiologiia 76(6):804–808Google Scholar
  197. O’Sullivan DJ (2000) Methods for analysis of the intestinal microflora. Curr Issues Intest Microb 1(2):39–50Google Scholar
  198. Ohland CL, MacNaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 298(6):G807–G819. doi: 10.1152/ajpgi.00243.2009 CrossRefGoogle Scholar
  199. Oppegård C, Rogne P, Emanuelsen L et al (2007) The two-peptide class II bacteriocins: structure, production, and mode of action. J Mol Microbiol Biotechnol 13(4):210–219. doi: 10.1159/000104750 CrossRefGoogle Scholar
  200. O’Riordan K, Fitzgerald GF (1997) Determination of genetic diversity within the genus Bifidobacterium and estimation of chromosomal size. FEMS Microbiol Lett 156(2):259–264. doi: 10.1016/S0378-1097(97)00435-7 CrossRefGoogle Scholar
  201. Park HK, So JS, Heo TR (1995) Acid adaptation promotes survival of Bifidobacterium breve against environmental stresses. Food Biotechnol 4(4):226–230Google Scholar
  202. Petrof EO, Kojima K, Ropeleski MJ et al (2004) Probiotics inhibit nuclear factor-kappaB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition. Gastroenterology 127(59):1474–1487. doi: 10.1053/j.gastro.2004.09.001 CrossRefGoogle Scholar
  203. Phillips M, Kailasapathy K, Tran L (2006) Viability of commercial probiotic cultures (L. acidophilus, Bifidobacterium sp., L. casei, L. paracasei and L. rhamnosus) in cheddar cheese. Int J Food Microbiol 108(2):276–280. doi: 10.1016/j.ijfoodmicro.2005.12.00 CrossRefGoogle Scholar
  204. Pochart P, Marteau P, Bouhnik Y et al (1992) Survival of bifidobacteria ingested via fermented milk during their passage through the human small intestine: an in vivo study using intestinal perfusion. Am J Clin Nutr 55(1):78–80Google Scholar
  205. Pot B, Ludwig W, Kersters K, Schleifer KH (1994) Taxonomy of lactic acid bacteria. In: de Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie Academic and Professional, Glasgow, pp 13–90CrossRefGoogle Scholar
  206. Poupard J, Husain I, Norris RF (1973) Biology of the bifidobacteria. Bacteriol Rev 37(2):136–165Google Scholar
  207. Preising J, Philippe D, Gleinser M et al (2010) Selection of bifidobacteria based on adhesion and anti-inflammatory capacity in vitro for amelioration of murine colitis. Appl Environ Microbiol 76(9):3048–3051. doi: 10.1128/AEM.03127-09 CrossRefGoogle Scholar
  208. Pretzer G, Snel J, Molenaar D et al (2005) Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol 187(17):6128–6136. doi: 10.1128/JB.187.17.6128-6136.2005 CrossRefGoogle Scholar
  209. Pridmore RD, Pittet AC, Praplan F et al (2008) Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity. FEMS Microbiol Lett 283(2):210–215. doi: 10.1111/j.1574-6968.2008.01176.x CrossRefGoogle Scholar
  210. Putaala H, Salusjarvi T, Nordstrom M et al (2008) Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclooxygenase expression. Res Microbiol 159(9):692–698. doi: 10.1016/j.resmic.2008.08.002 CrossRefGoogle Scholar
  211. Qin H, Zhang Z, Hang X, Jiang Y (2009) L. plantarum prevents enteroinvasive Escherichia coli–induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiol 9(1):63–69. doi: 10.1186/1471-2180-9-63CrossRefGoogle Scholar
  212. Rachmilewitz D, Katakura K, Karmeli F et al (2004) Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126(2):520–528. doi: 10.1053/j.gastro.2003.11.019 CrossRefGoogle Scholar
  213. Rajkumar R, Devaraj H, Niranjali S (1998) Binding of Shigella to rat and human intestinal mucin. Mol Cell Biochem 178(1):261–268. doi: 10.1023/A:1006844125976 CrossRefGoogle Scholar
  214. Rakhuba D, Novik G, Szwajcer Dey E (2009) Application of supercritical carbon dioxide (scCO2) for the extraction of glycolipids from Lactobacillus plantarum B-01. J Supercrit Fluids 49(1):45–51. doi: 10.1016/j.supflu.2008.11.016 CrossRefGoogle Scholar
  215. Ramiah K, van Reenen CA, Dicks LMT (2007) Expression of the mucus adhesion genes mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR. Int J Food Microbiol 116(3):405–409. doi: 10.1016/j.ijfoodmicro.2007.02.011 CrossRefGoogle Scholar
  216. Reid G (2006) Safe and efficacious probiotics: what are they? Trends Microbiol 14(8):348–352. doi: 10.1016/j.tim.2006.06.006 CrossRefGoogle Scholar
  217. Requena T, Burton J, Matsuki T et al (2002) Identification, detection, and enumeration of human Bifidobacterium species by PCR targeting the transaldolase gene. Appl Environ Microbiol 68(5):2420–2427. doi: 10.1128/AEM.68.5.2420-2427.2002 CrossRefGoogle Scholar
  218. Resta-Lenert S, Barrett KE (2006) Probiotics and commensals reverse TNFalpha-and IFN-gamma-induced dysfunction in human intestinal epithelial cells. Gastroenterology 130(3):731–746. doi: 10.1053/j.gastro.2005.12.015 CrossRefGoogle Scholar
  219. Reuter G (2001) The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intest Microbiol 2(2):43-53Google Scholar
  220. Rinckel LA, Savage DC (1990) Characterization of plasmids and plasmid-borne macrolide resistance from Lactobacillus sp. strain 100–33. Plasmid 23(2):119–125. doi: 10.1016/0147-619X(90)90030-G CrossRefGoogle Scholar
  221. Rojas M, Ascencio F, Conway PL (2002) Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl Environ Microbiol 68(5):2330–2336. doi: 10.1128/AEM.68.5.2330-2336.2002 CrossRefGoogle Scholar
  222. Roos S, Jonsson H (2002) A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148(2):433–442Google Scholar
  223. Roos S, Aleljung P, Robert N et al (1996) A collagen binding protein from Lactobacillus reuteri is part of an ABC transporter system? FEMS Microbiol Lett 144(1):33–38. doi: 10.1016/0378-1097(96)00334-5 CrossRefGoogle Scholar
  224. Ross RP, Mills S, Hill C et al (2010) Specific metabolite production by gut microbiota as a basis for probiotic function. Int Dairy J 20(4):269–276. doi: 10.1016/j.idairyj.2009.12.003 CrossRefGoogle Scholar
  225. Roy D, Sirois S (2000) Molecular differentiation of Bifidobacterium species with amplified ribosomal DNA restriction analysis and alignment of short regions of the ldh gene. FEMS Microbiol Lett 191(1):17–24. doi: 10.1016/S0378-1097(00)00364-5 CrossRefGoogle Scholar
  226. Roy D, Ward P (2004) Comparison of fructose-1,6-biphosphatase gene (fbp) sequences for the identification of Lactobacillus rhamnosus. Curr Microbiol 49(5):313–320. doi: 10.1007/s00284-004-4355-y CrossRefGoogle Scholar
  227. Roy D, Ward P, Champagne G (1996) Differentiation of bifidobacteria by use of pulsed-field gel electrophoresis and polymerase chain reaction. Int J Food Microbiol 29(1):11–29. doi: 10.1016/0168-1605(95)00013-5 CrossRefGoogle Scholar
  228. Ruas-Madiedo P, Hernández-Barranco A, Margolles A, de los Reyes-Gavilán CG (2005) A bile-salt resistant derivative of Bifidobacterium animalis has an altered fermentation pattern when grown on glucose and maltose. Appl Environ Microbiol 71(11):6564–6570. doi: 10.1128/AEM.71.11.6564-6570.2005 CrossRefGoogle Scholar
  229. Ruas-Madiedo P, Gueimonde M, Margolles A et al (2006) Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot 69(8):2011–2015Google Scholar
  230. Saarela M, Mogensen G, Fondén R et al (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215. doi: 10.1016/S0168-1656(00)00375-8 CrossRefGoogle Scholar
  231. Saarela M, Alakomi HL, Mättö J et al (2011) Acid tolerant mutants of Bifidobacterium animalis subsp. lactis with improved stability in fruit juice. Food Sci Technol 44(4):1012–1018. doi: 10.1016/j.lwt.2010.11.004 Google Scholar
  232. Sakata S, Ryu CS, Kitahara M et al (2006) Characterization of the genus Bifidobacterium by automated ribotyping and 16S rRNA gene sequences. Microbiol Immunol 50(1):1–10Google Scholar
  233. Salminen S, von Wright A, Morelli L et al (1998) Demonstration of safety of probiotics—a review. Int J Food Microbiol 44(1):93–106CrossRefGoogle Scholar
  234. Sameshima T, Magome C, Takeshita K et al (1998) Effect of intestinal Lactobacillus starter cultures on the behaviour of Staphylococcus aureus in fermented sausage. Int J Food Microbiol 41(1):1–7. doi: 10.1016/S0168-1605(98)00038-5 CrossRefGoogle Scholar
  235. Sánchez B, Arias S, Chaignepain S et al (2009) Identification of surface proteins involved in the adhesion of a probiotic Bacillus cereus strain to mucin and fibronectin. Microbiology 155(5):1708–1716. doi: 10.1099/mic.0.025288-0 CrossRefGoogle Scholar
  236. Sánchez B, Bressollier P, Urdaci MC et al (2008) Exported proteins in probiotic bacteria: adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host. FEMS Immunol Med Microbiol 54(1):1–17. doi: 10.1111/j.1574-695X.2008.00454.x CrossRefGoogle Scholar
  237. Sánchez B, Margolles A (2012) Selection of low-acetate producing Bifidobacterium lactis subsp. lactis strain. Appl Environ Microbiol 78(9):3338–3342. doi: 10.1128/AEM.00129-12 CrossRefGoogle Scholar
  238. Sánchez B, Ruiz L, Gueimonde M et al (2012) Toward improving technological and functional properties of probiotics in food. Trends Food Sci Technol 26(1):56–63. doi: 10.1016/j.tifs.2012.02.002 CrossRefGoogle Scholar
  239. Sartor RB (2006) Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 3(7):390–407. doi: 10.1038/ncpgasthep0528 CrossRefGoogle Scholar
  240. Sartor RB (2008) Microbial influences in inflammatory bowel diseases. Gastroenterology 134:577–594. doi: 10.1053/j.gastro.2007.11.059 CrossRefGoogle Scholar
  241. Satokari RM, Vaughan EE, Smidt H et al (2003) Molecular approaches for the detection and identification of bifidobacteria and lactobacilli in the human gastrointestinal tract. Syst Appl Microbiol 26(4):572–584. doi: 10.1078/072320203770865882 CrossRefGoogle Scholar
  242. Savoie S, Champagne CP, Chiasson S, Audet P (2007) Media and process parameters affecting the growth, strain ratios and specific acidifying activities of a mixed lactic starter containing aroma-producing and probiotic strains. J Appl Microbiol 103(1):163–174. doi: 10.1111/j.1365-2672.2006.03219.x CrossRefGoogle Scholar
  243. Schillinger U, Yousif NMK, Sesar L, Franz CMAP (2003) Use of group-specific and RAPD-PCR analyses for rapid differentiation of Lactobacillus strains from probiotic yogurts. Curr Microbiol 47(6):453–456. doi: 10.1007/s00284-003-4067-8 CrossRefGoogle Scholar
  244. Schlee M, Wehkamp J, Altenhoefer A et al (2007) Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect Immun 75(5):2399–2407. doi: 10.1128/IAI.01563-06 CrossRefGoogle Scholar
  245. Schleifer KH, Ludwig W (1995) Phylogeny of the genus Lactobacillus and related genera. Syst Appl Microbiol 18(4):641–646. doi: 10.1016/S0723-2020(11)80404-2 CrossRefGoogle Scholar
  246. Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286(6):C1213–C1228. doi: 10.1152/ajpcell.00558.2003 CrossRefGoogle Scholar
  247. Schrezenmeir J, de Vrese M (2001) Probiotics, prebiotics, and synbiotics—approaching a definition. Am J Clin Nutr 73(2):361S–364SGoogle Scholar
  248. Schultz M, Linde HJ, Lehn N et al (2003) Immunomodulatory consequences of oral administration of Lactobacillus rhamnosus strain GG in healthy volunteers. J Dairy Res 70(2):165–173. doi: 10.1017/S0022029903006034 CrossRefGoogle Scholar
  249. Sekine K, Toida T, Saito M et al (1985) A new morphologically characterized cell wall preparation (whole peptidoglycan) from Bifidobacterium infantis with a higher efficacy on the regression of an established tumor in mice. Cancer Res 45(3):1300–1307Google Scholar
  250. Seregni E, Botti C, Massaron S et al (1997) Structure, function and gene expression of epithelial mucins. Tumori 83(3):625–632Google Scholar
  251. Servin AL (2004) Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28(4):405–440. doi: 10.1016/j.femsre.2004.01.003 CrossRefGoogle Scholar
  252. Seth A, Yan F, Polk DB, Rao RK (2008) Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 294(4):G1060–G1069. doi: 10.1152/ajpgi.00202.2007 CrossRefGoogle Scholar
  253. Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 121(2):123–138. doi: 10.1016/j.ijfoodmicro.2007.09.001 CrossRefGoogle Scholar
  254. Settanni L, van Sinderen D, Rossi J, Corsetti A (2005) Rapid differentiation and in situ detection of 16 sourdough Lactobacillus species by multiplex PCR. Appl Environ Microbiol 71(6):3049–3059. doi: 10.1128/AEM.71.6.3049-3059.2005 CrossRefGoogle Scholar
  255. Sherman PM, Johnson-Henry KC, Yeung HP et al (2005) Probiotics reduce enterohemorrhagic Escherichia coli O157:H7- and enteropathogenic E. coli O127:H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements. Infect Immun 73(8):5183–5188. doi: 10.1128/IAI.73.8.5183-5188.2005 CrossRefGoogle Scholar
  256. Shida K, Nanno M (2008) Probiotics and immunology: separating the wheat from the chaff. Trends Immunol 29(11):565–573. doi: 10.1016/ CrossRefGoogle Scholar
  257. Shukla TP (1998) Nutraceutical novelties: trends in proprietary technology. Cereal Foods World 43(5):388–389Google Scholar
  258. Sidarenka AV, Novik GI, Akimov VN (2008) Application of molecular methods to classification and identification of bacteria of Bifidobacterium genus. Mikrobiologiia 77(3):251–260Google Scholar
  259. Simpson PJ, Ross RP, Fitzgerald GF, Santon C (2004) Bifidobacterium psychraerophilum sp. nov., and Aeriscardovia aeriphila gen. nov., sp. nov., isolated from a porcine caecum. Int J Syst Evol Microbiol 54(2):401–406. doi: 10.1099/ijs.0.02667-0 CrossRefGoogle Scholar
  260. Singha S, Goswami P, Singh R, Heller KJ (2009) Application of molecular identification tools for Lactobacillus, with a focus on discrimination between closely related species: a review. Food Sci Technol 42(2):448–457. doi: 10.1016/j.lwt.2008.05.019 Google Scholar
  261. Sleator RD (2010) Probiotics — a viable therapeutic alternative for enteric infections especially in the developing world. Discov Med 10(51):119–124Google Scholar
  262. Smits HH, Engering A, van der Kleij D et al (2005) Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol 115(6):1260–1267. doi: 10.1016/j.jaci.2005.03.036 CrossRefGoogle Scholar
  263. Song YL, Kato N, Liu CX et al (2000) Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA. FEMS Microbiol Lett 187(2):167–173. doi: 10.1016/S0378-1097(00)00196-8 Google Scholar
  264. Spanhaak S, Havenaar R, Schaafsma G (1998) The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. Eur J Clin Nutr 52(12):899–907. doi: 10.1038/sj.ejcn.1600663 CrossRefGoogle Scholar
  265. Šrůtkova D, Španova A, Špano M et al (2011) Efficiency of PCR-based methods in discriminating Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis strains of human origin. J Microbiol Meth 87(1):10–16. doi: 10.1016/j.mimet.2011.06.014 CrossRefGoogle Scholar
  266. Stack HM, Kearney N, Stanton C et al (2010) Association of beta-glucan endogenous production with increased stress-tolerance of intestinal lactobacilli. Appl Environ Microbiol 76(2):500–507. doi: 10.1128/AEM.01524-09 CrossRefGoogle Scholar
  267. Sun J, Le GW, Shi YH, Su GW (2007) Factors involved in binding of Lactobacillus plantarum Lp6 to rat small intestinal mucus. Lett Appl Microbiol 44(1):79–85. doi: 10.1111/j.1472-765X.2006.02031.x CrossRefGoogle Scholar
  268. Szponar B, Pawlik KJ, Gamian A, Szwajcer Dey E (2003) Protein fraction of barley spent grain as a new simple medium for growth and sporulation of soil actinobacteria. Biotechnol Lett 25(20):1717–1721. doi: 10.1023/A:1026046403010 CrossRefGoogle Scholar
  269. Szwajcer Dey E, Rasmussen J, Meldal M, Breddam K (1992) Proline specific endopeptidases from microbial sources: isolation of an enzyme from Xanthomonas sp. J Bacteriol 174(8):2454–2459Google Scholar
  270. Tabasco R, García-Cayuela T, Peláez C, Requena T (2009) Lactobacillus acidophilus La-5 increases lactacin B production when it senses live target bacteria. Int J Food Microbiol 132(2–3):109–116. doi: 10.1016/j.ijfoodmicro.2009.04.004 CrossRefGoogle Scholar
  271. Talwalkar A, Kailasapathy K, Peiris P, Arumugaswamy R (2001) Application of RBGR—a simple way for screening of oxygen tolerance in probiotic bacteria. Int J Food Microbiol 71(2):245–248. doi: 10.1016/S0168-1605(01)00563-3 CrossRefGoogle Scholar
  272. Tannock GW (1999) Identification of lactobacilli and bifidobacteria. Curr Issues Mol Biol 1(1–2):53–64Google Scholar
  273. Tannock GW, Munro K, Harmsen HJM et al (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66(6):2578–2588. doi: 10.1128/AEM.66.6.2578-2588.2000 CrossRefGoogle Scholar
  274. Tannock GW, Tilsala-Timisjarvi A, Rodtong S et al (1999) Identification of Lactobacillus isolates from the gastrointestinal tract, silage, and yogurt by 16S-23S rRNA gene intergenic spacer region. Appl Environ Microbiol 65(9):4264–4276Google Scholar
  275. Tao Y, Drabik KA, Waypa TS et al (2006) Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells. Am J Physiol Cell Physiol 290(4):C1018–C1030. doi: 10.1152/ajpcell.00131.2005 CrossRefGoogle Scholar
  276. Torriani S, Felix GE, Dellaglio F (2001) Differentiation of Lactobacillus plantarum , L. pentosus ,and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA – derived primers. Appl Environ Microbiol 67(8):3450–3454. doi: 10.1128/AEM.67.8.3450-3454.2001Google Scholar
  277. Trivedi K, Barrett KE, Resta-Lenert SC (2003) Probiotic inhibition of the entry of enteroinvasive E. coli into human intestinal epithelial cells involves both Rho-dependent and independent pathways. Gastroenterology 124(4):A106CrossRefGoogle Scholar
  278. Turpin W, Humblot C, Noordine ML et al (2012) Lactobacillaceae and cell adhesion: genomic and functional screening. PLoS One 7(5):e38034. doi: 10.1371/journal.pone.0038034 CrossRefGoogle Scholar
  279. Tynkkynen S, Satokari R, Saarela M et al (1999) Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains. Appl Environ Microbiol 65(9):3908–3914Google Scholar
  280. Ulluwishewa D, Anderson RC, McNabb WC et al (2011) Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 141(5):769–776. doi: 10.3945/jn.110.135657 CrossRefGoogle Scholar
  281. Van Hoek AH, Mayrhofer S, Domig KJ, Aarts HJ (2008) Resistance determinant erm(X) is borne by transposon Tn5432 in Bifidobacterium thermophilum and Bifidobacterium animalis subsp. lactis. Int J Antimicrob Agents 31(6):544–548. doi: 10.1016/j.ijantimicag.2008.01.025 CrossRefGoogle Scholar
  282. Van Klinken BJ, Dekker J, Büller HA, Einerhand AW (1995) Mucin gene structure and expression: protection vs. adhesion. Am J Physiol 269(5):G613–G627Google Scholar
  283. Van Pijkeren J–P, Canchaya C, Ryan KA et al (2006) Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. ApplEnviron Microbiol 72(6):4143–4153. doi: 10.1128/AEM.03023–05Google Scholar
  284. Van Tassell ML, Miller MJ (2011) Lactobacillus adhesion to mucus. Nutrients 3(5):613–636. doi: 10.3390/nu3050613 CrossRefGoogle Scholar
  285. Vandenberg PA (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol Rev 12(1–3):221–237. doi: 10.1111/j.1574-6976.1993.tb00020.x CrossRefGoogle Scholar
  286. Vanderpool C, Yan F, Polk DB (2008) Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis 14(11):1585–1596. doi: 10.1002/ibd.20525 Google Scholar
  287. Vanegas MC, Gonzalez LM, Arevalo SA (2010) Antibiotic activity of Bifidobacterium sp. isolated from breast milk and newborn faeces, against the main causes for foodborne illnesses. Infect 14(4):241–247Google Scholar
  288. Vasquez A, Ahrne S, Pettersson B, Molin G (2001) Temporal temperature gradient gel electrophoresis (TTGE) as a tool for identification of Lactobacillus casei, Lactobacillus paracasei, Lactobacillus zeae and Lactobacillus rhamnosus. Lett Appl Microbiol 32:215–219CrossRefGoogle Scholar
  289. Vaughan EE, Heilig GHJ, Ben-Amor K, de Vos WM (2005) Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches. FEMS Microbiol Rev 29(3):477–490. doi: 10.1016/j.femsre.2005.04.009 CrossRefGoogle Scholar
  290. Ventura M, Zink R (2002) Specific identification and molecular typing analysis of Lactobacillus johnsonii by using PRC-based methods and pulsed-field gel electrophoresis. FEMS Microbiol Lett 217(2):141–154. doi: 10.1111/j.1574-6968.2002.tb11468.x CrossRefGoogle Scholar
  291. Ventura M, Meylan V, Zink R (2003) Identification and tracing of Bifidobacterium species by use of enterobacterial repetitive intergenic consensus sequences. Appl Environ Microbiol 69(7):4296–4301. doi: 10.1128/AEM.69.7.4296-4301.2003 CrossRefGoogle Scholar
  292. Ventura M, van Sinderen D, Fitzgerald GF, Zink R (2004) Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie Van Leeuwenhoek 86(3):205–223. doi: 10.1023/ CrossRefGoogle Scholar
  293. Ventura M, Canchaya C, Del Casale A et al (2006) Analysis of bifidobacterial evolution using a multilocus approach. Int J Syst Evol Microbiol 56(12):2783–2792. doi: 10.1099/ijs.0.64233-0 CrossRefGoogle Scholar
  294. Vesterlund S, Vankerckhoven V, Saxelin M et al (2007) Safety assessment of Lactobacillus strains: presence of putative risk factors in faecal, blood and probiotic isolates. Int J Food Microbiol 116(3):325–331CrossRefGoogle Scholar
  295. Vimal DB, Khullar M, Gupta S, Ganguly NK (2000) Intestinal mucins: the binding sites for Salmonella typhimurium. Mol Cell Biochem 204(1–2):107–117. doi: 10.1023/A:1007015312036 CrossRefGoogle Scholar
  296. Vincent D, Roy D, Mondou F, Dery C (1998) Characterization of bifidobacteria by random DNA amplification. Int J Food Microbiol 43(3):185–193. doi: 10.1016/S0168-1605(98)00109-3 CrossRefGoogle Scholar
  297. Vlkova E, Medkova J, Rada V (2002) Comparison of four methods for identification of bifidobacteria to the genus level. Czech J Food Sci 20(5):171–174Google Scholar
  298. Von Wright A (2005) Regulating the safety of probiotics—the European approach. Curr Pharm Des 11(1):17–23. doi: 10.2174/1381612053382322 CrossRefGoogle Scholar
  299. Walker DC, Girgis HS, Klaenhammer TR (1999) The groESL chaperone operon of Lactobacillus johnsonii. Appl Environ Microbiol 65(7):3033–3041Google Scholar
  300. Ward P, Roy D (2005) Review of molecular methods for identification, сharacterization and detection of bifidobacteria. Lait 85(1–2):23–32. doi: 10.1051/lait:2004024 CrossRefGoogle Scholar
  301. Wehkamp J, Harder J, Wehkamp K et al (2004) NF-kappa B- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect Immun 72(10):5750–5758. doi: 10.1128/IAI.72.10.5750-5758.2004 CrossRefGoogle Scholar
  302. Weiss A, Lettner HP, Kramer W et al (2005) Molecular methods used for the identification of potentially probiotic Lactobacillus reuteri strains. Food Technol Biotech 43(3):295–300Google Scholar
  303. Welling GW, Elfferich P, Raangs GC et al (1997) 16S ribosomal RNA-targeted oligonucleotide probes for monitoring of intestinal tract bacteria. Scand J Gastroenterol Suppl 222:17–19Google Scholar
  304. Yamamoto T, Morotomi M, Tanaka R (1992) Species specific oligonucleotide probes for five Bifidobacterium species detected in human intestinal microflora. Appl Environ Microbiol 58(12):4076–4079Google Scholar
  305. Yamano T, Iino H, Takada M et al (2006) Improvement of the human intestinal flora by ingestion of the probiotic strain Lactobacillus johnsonii La1. Br J Nutr 95(2):303–312. doi: 10.1079/BJN20051507 CrossRefGoogle Scholar
  306. Yan F, Cao H, Cover TL et al (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132(2):562–575. doi: 10.1053/j.gastro.2006.11.022 CrossRefGoogle Scholar
  307. Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75(1):39–48. doi: 10.1189/jlb.0403147 CrossRefGoogle Scholar
  308. Zareie M, Johnson-Henry K, Jury J et al (2006) Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 55(11):1553–1560. doi: 10.1136/gut.2005.080739 CrossRefGoogle Scholar
  309. Zhang YC, Zhang LW, Tuo YF et al (2010) Inhibition of Shigella sonnei adherence to HT-29 cells by lactobacilli from chinese fermented food and preliminary characterization of s-layer protein involvement. Res Microbiol 161(8):667–672. doi: 10.1016/j.resmic.2010.06.005 CrossRefGoogle Scholar
  310. Zinedine A, Faid M (2007) Isolation and characterization of strains of bifidobacteria with probiotic properties in vitro. World J Dairy Food Sci 2(1):28-34Google Scholar
  311. Zyrek AA, Cichon C, Helms S et al (2007) Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 9(3):804–816. doi: 10.1111/j.1462-5822.2006.00836.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Galina Novik
    • 1
    Email author
  • Anastasiya Sidarenka
    • 1
  • Elena Kiseleva
    • 1
  • Emily Kolomiets
    • 1
  • Estera Szwajcer Dey
    • 2
  1. 1.Collection of Microorganisms, Institute of Microbiology, Belarus National Academy of SciencesMinskBelarus
  2. 2.Pure and Applied Biochemistry, Chemical CentreLund UniversityLundSweden

Personalised recommendations