Advertisement

Solid-State Fermentation of Agricultural Residues for the Production of Antibiotics

  • Ganesh Kumar ArumugamEmail author
  • Venkatesh Selvaraj
  • Dharani Gopal
  • Kirubagaran Ramalingam
Chapter

Abstract

The increasing demand in pharmaceutical products for human welfare has encouraged remarkable attempts towards the development of biotechnological processes for the production of antibiotics using readily available agricultural residues. Immense availability and cost-effectiveness of agricultural residues compared to sugars offer greater advantages in commercial usage. However, these constituents are currently underutilised. Productions of antibiotics have been carried out by both solid-state fermentation (SSF) and submerged fermentation (SmF) using wide range of microorganisms. The advancement in the field of SSF and its advantage over SmF has opened its application for production of antibiotics utilising low carbon and energy sources. This chapter gives an insight on various approaches that are being carried out for antibiotic production using SSF. The biotechnological potential of lignocellulosic biomass, factors affecting the production and yield of antibiotics from specific microorganisms are accounted.

Keywords

Secondary Metabolite Sugarcane Bagasse Wheat Bran Antibiotic Production Shikimic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support given by the Earth System Science Organization, Ministry of Earth Sciences, Government of India. The authors are thankful to the Director, National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences, Govt. of India, for his constant support and encouragement for preparation of this chapter. The authors are also thankful to all the scientific and supporting staffs of Marine Biotechnology, NIOT, Chennai, for their support.

References

  1. Adinarayana K, Prabhakar T, Srinivasulu V, Anitha Rao M, Jhansi Lakshmi P, Ellaiah P (2003) Optimization of process parameters for cephalosporin C production under solid state fermentation from Acremonium chrysogenum. Process Biochem 39:171–177CrossRefGoogle Scholar
  2. Ahamad MZ, Panda BP, Javed S, Ali M (2006) Production of mevastatin by solid state fermentation using wheat bran as substrate. Res J Microbiol 1(5):443–447CrossRefGoogle Scholar
  3. Arakawa K, Mochizuki S, Yamada K, Noma T, Kinashi H (2007) γ-Butyrolactone autoregulator-receptor system involved in lankacidin and lankamycin production and morphological differentiation in Streptomyces rochei. Microbiology 153(6):1817–1827CrossRefGoogle Scholar
  4. Asagbra AE, Sanni AI, Oyewole OB (2005a) Solid-state fermentation production of tetracycline by Streptomyces strains using some agricultural wastes as substrate. World J Microbiol Biotechnol 21(2):107–114CrossRefGoogle Scholar
  5. Asagbra AE, Oyewole OB, Odunfa SA (2005b) Production of oxytetracycline from agricultural wastes using Streptomyces species. Niger Food J 23:174–182Google Scholar
  6. Asanza TML, Gontier E, Bienaime C, Nava Saucedo JE, Barbotin JN (1997) Response surface analysis of chlortetracycline and tetracycline production with K-carrageenan immobilized Streptomyces aureofaciens. Enzyme Microb Technol 21(5):314–320CrossRefGoogle Scholar
  7. Barrios-Gonzalez J, Mejia A (1996) Production of secondary metabolites by solid-state fermentation. Biotechnol Annu Rev 2:85–121CrossRefGoogle Scholar
  8. Barrios-Gonzalez J, Castillo TE, Mejia A (1993) Development of high penicillin producing strains for solid state fermentation. Biotechnol Adv 11(3):525–537CrossRefGoogle Scholar
  9. Barrios-Gonzalez J, Fernandez FJ, Tomasini A (2003) Microbial secondary metabolites production and strain improvement. Ind J Biotechnol 2:322–333Google Scholar
  10. Bate N, Butler AR, Smith IP, Cundliffe E (2000) The mycarose-biosynthetic genes of Streptomyces fradiae, producer of tylosin. Microbiology 146:139–146Google Scholar
  11. Behal V, Neuzil J, Hostalek Z (1983) Effect of tetracycline derivatives and some cations on the activity of anhydrotetracycline oxygenase. Biotechnol Lett 5:537–542CrossRefGoogle Scholar
  12. Bigelis R, He H, Yang HY, Chang LP, Greenstein M (2006) Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation. J Ind Microbiol Biotechnol 33(10):815–826CrossRefGoogle Scholar
  13. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22CrossRefGoogle Scholar
  14. Brakhage AA, Thon M, Sprote P, Scharf DH, Al-Abdallah Q, Wolke SM, Hortschansky P (2009) Aspects on evolution of fungal β-lactam biosynthesis gene clusters and recruitment of trans-acting factors. Phytochemistry 70:1801–1811CrossRefGoogle Scholar
  15. Brautaset T, Sekurova ON, Sletta H, Ellingsen TE, Strom AR, Valla S, Zotchev SB (2000) Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7:395–403CrossRefGoogle Scholar
  16. Brodhagen M, Henkels MD, Loper JE (2004) Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 70(3):1758–1766CrossRefGoogle Scholar
  17. Bussari B, Parag SS, Nikhil SS, Survase AS, Rekha SS (2008) Production of cephamycin C by Streptomyces clavuligerus NT4 using solid-state fermentation. J Ind Microbiol Biotechnol 35(1):49–58CrossRefGoogle Scholar
  18. Butler AR, Flint SA, Cundliffe E (2001) Feedback control of polyketide metabolism during tylosin production. Microbiology 147:795–801Google Scholar
  19. Chen W, Huang T, He X, Meng Q, You D, Bai L, Li J, Wu M, Li R, Xie Z, Zhou H, Zhou X, Tan H, Deng Z (2009) Characterization of the polyoxin biosynthetic gene cluster from Streptomyces cacaoi and engineered production of polyoxin H. J Biol Chem 284(16):10627–10638CrossRefGoogle Scholar
  20. Corre C, Song L, O’Rourke S, Chater KF, Challis GL (2008) 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci U S A 105:17510–17515CrossRefGoogle Scholar
  21. Cuadra T, Fernandez FJ, Tomasini A, Barrios-Gonzalez J (2008) Influence of pH regulation and nutrient content on cephalosporin C production in solid-state fermentation by Acremonium chrysogenum C10. Lett Appl Microbiol 46(2):216–220CrossRefGoogle Scholar
  22. Danesh A, Mamo G, Mattiasson B (2011) Production of haloduracin by Bacillus halodurans using solid-state fermentation. Biotechnol Lett 33(7):1339–1344CrossRefGoogle Scholar
  23. Devi S, Padma S (2000) Production of cephamycin C in repeated batch operations from immobilized Streptomyces clavuligerus. Process Biochem 36(3):225–231CrossRefGoogle Scholar
  24. Doull JL, Vining LC (1990) Nutritional control of actinorhodin production by Streptomyces coelicolor A3(2): suppressive effects of nitrogen and phosphate. Appl Microbiol Biotechnol 32(4):449–454CrossRefGoogle Scholar
  25. El-Enshasy HA, Mohamed NA, Farid MA, El-Diwany AI (2008) Improvement of erythromycin production by Saccharopolyspora erythraea in molasses based medium through cultivation medium optimization. Bioresour Technol 99(10):4263–4268CrossRefGoogle Scholar
  26. Elibol M (2004) Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem 39(9):1057–1062CrossRefGoogle Scholar
  27. Ellaiah P, Premkumar J, Kanthachari PV, Adinarayana K (2002) Production and optimization studies of cephalosporin C by solid state fermentation. Hindustan Antibiot Bull 44(1–4):1–7Google Scholar
  28. Ellaiah P, Shrinivasulu B, Adinarayana K (2004) Optimization studies on neomycin production by a mutant strain of Streptomyces marinensis in solid-state fermentation. Process Biochem 39:529–534CrossRefGoogle Scholar
  29. El-Naggar MY, El-Assar SA, Abdul-Gawad SM (2009) Solid-state fermentation for the production of meroparamycin by Streptomyces sp. strain MAR01. J Microbiol Biotechnol 19(5):468–473CrossRefGoogle Scholar
  30. Epp JK, Burgett SG, Schoner BE (1987) Cloning and nucleotide sequence of a carbomycin-resistance gene from Streptomyces thermotolerans. Gene 53(1):73–83CrossRefGoogle Scholar
  31. Espeso EA, Fernandez-Canon JM, Penalva MA (1995) Carbon regulation of penicillin biosynthesis in Aspergillus nidulans: a minor effect of mutations in creB and creC. FEMS Microbiol Lett 126:63–68CrossRefGoogle Scholar
  32. Farzana K, Shah SN, Butt FB, Awan SB (2005) Biosynthesis of bacitracin in solid-state fermentation by Bacillus licheniformis using defatted oil seed cakes as substrate. Pak J Pharm Sci 18(1):55–57Google Scholar
  33. Froyshov O, Mathiesen A, Haavik HI (1980) Regulation of bacitracin synthetase by divalent metal ions in Bacillus licheniformis. J Gen Microbiol 117:163–167Google Scholar
  34. Gramajo HC, White J, Hutchinson CR, Bibb MJ (1991) Overproduction and localization of components of the polyketide synthase of Streptomyces glaucescens involved in the production of the antibiotic tetracenomycin C. J Bacteriol 173:6475–6483Google Scholar
  35. Graminha EBN, Goncalves AZL, Pirota RDPB, Balsalobre MAA, Da Silva R, Gomes E (2008) Enzyme production by solid-state fermentation: application to animal nutrition. Anim Feed Sci Technol 144(1–2):1–22CrossRefGoogle Scholar
  36. Gristwood T, Fineran PC, Everson L, Williamson NR, Salmond GP (2009) The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiol 9:112–126CrossRefGoogle Scholar
  37. Gupte MD, Kulkarni PR (2002) A study of antifungal antibiotic production by Streptomyces chattanoogensis MTCC 3423 using full factorial design. Lett Appl Microbiol 35(1):22–26CrossRefGoogle Scholar
  38. Gutierrez S, Fierro F, Casqueiro J, Martin JF (1999) Gene organization and plasticity of the beta-lactam genes in different filamentous fungi. Antonie Van Leeuwenhoek 75:81–94CrossRefGoogle Scholar
  39. Haese A, Keller U (1988) Genetics of actinomycin C production in Streptomyces chrysomallus. J Bacteriol 170(3):1360–1368Google Scholar
  40. Haste NM, Perera VR, Maloney KN, Tran DN, Jensen P, Fenical W, Nizet V, Hensler ME (2010) Activity of the streptogramin antibiotic etamycin against methicillin-resistant Staphylococcus aureus. J Antibiot 63:219–224CrossRefGoogle Scholar
  41. Hyun C, Kim SS, Sohng JK, Hahn J, Kim J, Su J (2000) An efficient approach for cloning the dNDP-glucose synthase gene from actinomycetes and its application in Streptomyces spectabilis a spectinomycin producer. FEMS Microbiol Lett 183(1):183–189CrossRefGoogle Scholar
  42. Indu ST (2006) Environmental biotechnology: Basic concepts and applications. In: Antibiotic industry, 2nd edn. IK International Pvt Ltd, India, pp 435–443Google Scholar
  43. Jeanne MD, Craig AT (2009) Identification and characterization of NocR as a positive transcriptional regulator of the β-Lactam nocardicin A in Nocardia uniformis. J Bacteriol 191:1066–1077CrossRefGoogle Scholar
  44. Jekosch K, Kuck U (2000) Loss of glucose repression in an Acremonium chrysogenum β-lactam producer strain and its restoration by multiple copies of the cre1 gene. Appl Microbiol Biotechnol 54:556–563CrossRefGoogle Scholar
  45. Juan FM (2004) Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR–PhoP system: an unfinished story. J Bacteriol 186:5197–5201CrossRefGoogle Scholar
  46. Juan FM, Arnold LD (2002) Unraveling the methionine–cephalosporin puzzle in Acremonium chrysogenum. Trends Biotechnol 20(12):502–507CrossRefGoogle Scholar
  47. Kagliwal LD, Survase SA, Singhal RS (2009) A novel medium for the production of cephamycin C by Nocardia lactamdurans using solid-state fermentation. Bioresour Technol 100(9):2600–2606CrossRefGoogle Scholar
  48. Karray F, Darbon E, Oestreicher N, Dominguez H, Tuphile K, Gagnat J, Blondelet-Rouault MH, Gerbaud C, Pernodet JL (2007) Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens. Microbiology 153(12):4111–4122CrossRefGoogle Scholar
  49. Karray F, Darbon E, Nguyen HC, Gagnat J, Pernodet JL (2010) Regulation of the biosynthesis of the macrolide antibiotic spiramycin in Streptomyces ambofaciens. J Bacteriol 192:5813–5821CrossRefGoogle Scholar
  50. Kawaguchi T, Azuma M, Horinouchi S, Beppu T (1988) Effect of B-factor and its analogues on rifamycin biosynthesis in Nocardia sp.. J Antibiot 41:360–365CrossRefGoogle Scholar
  51. Keller U, Lang M, Crnovcic I, Pfennig F, Schauwecker F (2010) The actinomycin biosynthetic gene cluster of Streptomyces chrysomallus: a genetic hall of mirrors for synthesis of a molecule with mirror symmetry. J Bacteriol 192(10):2583–2595CrossRefGoogle Scholar
  52. Khaliq S, Rashid N, Akhtar K, Ghauri MA (2009) Production of tylosin in solid-state fermentation by Streptomyces fradiae NRRL-2702 and its gamma-irradiated mutant (γ-1). Lett Appl Microbiol 49(5):635–640CrossRefGoogle Scholar
  53. Kleerebezem M, Quadri LEN, Kupers OP, De Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904CrossRefGoogle Scholar
  54. Koonin EV, Wolf YI, Aravind L (2001) Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res 11:240–252CrossRefGoogle Scholar
  55. Kota KP, Sridhar P (1999) Solid state cultivation of Streptomyces clavuligerus for cephamycin C production. Process Biochem 34:325–328CrossRefGoogle Scholar
  56. Kumar M, Srivastava S (2011) Effect of calcium and magnesium on the antimicrobial action of enterocin LR/6 produced by Enterococcus faecium LR/6. Int J Antimicrob Agents 37(6):572–575CrossRefGoogle Scholar
  57. Laich F, Fierro F, Cardoza RE, Martín JF (1999) Organization of the gene cluster for biosynthesis of penicillin in Penicillium nalgiovense and antibiotic production in cured dry sausages. Appl Environ Microbiol 65:1236–1240Google Scholar
  58. Lopez-Calleja AC, Cuadra T, Barrios-Gonzalez J, Fierro F, Fernandez FJ (2012) Solid-state and submerged fermentations show different gene expression profiles in cephalosporin C production by Acremonium chrysogenum. J Mol Microbiol Biotechnol 22(2):126–134CrossRefGoogle Scholar
  59. Lotfy WA (2007) Production of cephalosporin C by Acremonium chrysogenum grown on beet molasses: optimization of process parameters through statistical experimental designs. Res J Microbiol 2:1–12CrossRefGoogle Scholar
  60. Mahalaxmi Y, Sathish T, Subba Rao C, Prakasham RS (2010) Corn husk as a novel substrate for the production of rifamycin B by isolated Amycolatopsis sp. RSP3 under SSF. Process Biochem 45(1):47–53CrossRefGoogle Scholar
  61. Malik VS (1979) Genetics of applied microbiology. Adv Genet 20:37–126CrossRefGoogle Scholar
  62. Marinelli F, Marcone GL (2011) Microbial secondary metabolites. In: Comprehensive biotechnology, 2nd edn. Elsevier, Netherlands, pp 285–297Google Scholar
  63. Martin J, Garcia-Estrada C, Rumbero A, Recio E, Albillos SM, Ullan RV, Martin JF (2011) Characterization of an autoinducer of penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol 77(16):5688CrossRefGoogle Scholar
  64. Mehmood N, Olmos E, Goergen JL, Blanchard F, Marchal P, Klockner W, Buchs J, Delaunay S (2012) Decoupling of oxygen transfer and power dissipation for the study of the production of pristinamycins by Streptomyces pristinaespiralis in shaking flasks. Biochem Eng J 68:25–33CrossRefGoogle Scholar
  65. Miyake K, Kuzuyama T, Horinouchi S, Beppu T (1990) The A-factor-binding protein of Streptomyces griseus negatively controls streptomycin production and sporulation. J Bacteriol 172:3003–3008Google Scholar
  66. Mizumoto S, Hirai M, Shoda M (2006) Production of lipopeptide antibiotic iturin A using soybean curd residue cultivated with Bacillus subtilis in solid-state fermentation. Appl Microbiol Biotechnol 72:869–875CrossRefGoogle Scholar
  67. Murthy MVR, Mohan EVS, Sadhukhan AK (1999) Cyclosporin A production by Tolypocladium inflatum using solid state fermentation. Process Biochem 34:269–280CrossRefGoogle Scholar
  68. Nguyen KT, Nguyen LT, Behal V (1995) The induction of valine dehydrogenase activity from Streptomyces by l-valine is not repressed by ammonium. Biotechnol Lett 17:31–34CrossRefGoogle Scholar
  69. Obanye AIC, Hobbs G, Gardner DCJ, Oliver SG (1996) Correlation between carbon flux through the pentose phosphate pathway and production of the antibiotic methylenomycin in Streptomyces coelicolor A3(2). Microbiology 142:133–137CrossRefGoogle Scholar
  70. Ohno A, Ano T, Shoda M (1995) Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation. Biotechnol Bioeng 47(2):209–214CrossRefGoogle Scholar
  71. Otten SL, Ferguson J, Hutchinson CR (1995) Regulation of daunorubicin production in Streptomyces peucetius by the dnrR2 locus. J Bacteriol 177(5):1216–1224Google Scholar
  72. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: 1-bioprocess and products. Process Biochem 35(10):1153–1169CrossRefGoogle Scholar
  73. Poonam Singh N, Pandey A (2009) Biotechnology for agro-industrial residues utilisation. Utilisation of agro-residues, vol XVIII. Springer, New York, p 466Google Scholar
  74. Quirs LM, Salas JA (1995) Biosynthesis of the macrolide oleandomycin by Streptomyces antibioticus. Purification and kinetic characterization of an oleandomycin glucosyltransferase. J Biol Chem 270:18234–18239CrossRefGoogle Scholar
  75. Recio E, Aparicio JF, Rumbero A, Martin JF (2006) Glycerol, ethylene glycol and propanediol elicit pimaricin biosynthesis in the PI-factor-defective strain Streptomyces natalensis npi287 and increase polyene production in several wild-type actinomycetes. Microbiology 152:3147–3156CrossRefGoogle Scholar
  76. Rius N, Maeda K, Demain AL (1996) Induction of l-lysine ε-aminotransferase by l-lysine in Streptomyces clavuligerus, producer of cephalosporins. FEMS Microbiol Lett 144:207–211Google Scholar
  77. Saykhedkar SS, Singhal RS (2004) Solid-state fermentation for production of griseofulvin on rice bran using Penicillium griseofulvum. Biotechnol Prog 20(4):1280–1284CrossRefGoogle Scholar
  78. Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7(9):1753–1760CrossRefGoogle Scholar
  79. Sekar C, Rajasekar VW, Balaraman K (1997) Production of Cyclosporin A by solid state fermentation. Bioprocess Biosyst Eng 17:257–259CrossRefGoogle Scholar
  80. Shaligram NS, Singh SK, Singhal RS, Szakacs G, Pandey A (2009) Effect of precultural and nutritional parameters on compactin production by solid-state fermentation. J Microbiol Biotechnol 19(7):690–697Google Scholar
  81. Shapiro S (1989) Nitrogen assimilation in Actinomycetes and the influence of nitrogen nutrition on Actinomycete secondary metabolism. In: Shapiro S (ed) Regulation of secondary metabolism in actinomycetes. CRC Press, Boca Raton, FL, pp 135-212Google Scholar
  82. Shih IL, Kuo CY, Hsieh FC, Kao SS, Hsieh C (2008) Use of surface response methodology to optimize culture conditions for iturin A production by Bacillus subtilis in solid-state fermentation. J Chin Ins Chem Eng 39(6):635–643CrossRefGoogle Scholar
  83. Sircar A, Sridhar P, Das PK (1998) Optimization of solid state medium for the production of clavulanic acid by Streptomyces clavuligerus. Process Biochem 33(3):283–289CrossRefGoogle Scholar
  84. Sohn YS, Nam DH, Ryu DD (2001) Biosynthetic pathway of cephabacins in Lysobacter lactamgenus: molecular and biochemical characterization of the upstream region of the gene clusters for engineering of novel antibiotics. Metab Eng 3(4):380–392CrossRefGoogle Scholar
  85. Survase SA, Shaligram NS, Pansuriya RC, Annapure US, Singhal RS (2009) A novel medium for the enhanced production of cyclosporin A by Tolypocladium inflatum MTCC 557 using solid state fermentation. J Microbiol Biotechnol 19(5):462–467CrossRefGoogle Scholar
  86. Takano E (2006) γ-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9(3):287–294CrossRefGoogle Scholar
  87. Teijeira F, Ullan RV, Fernandez-Aguado M, Martin JF (2011) CefR modulates transporters of beta-lactam intermediates preventing the loss of penicillins to the broth and increases cephalosporin production in Acremonium chrysogenum. Metab Eng 13(5):532–543CrossRefGoogle Scholar
  88. Tercero JA, Espinosa JC, Lacalle RA, Jimenez A (1996) The biosynthetic pathway of the aminonucleoside antibiotic puromycin as deduced from the molecular analysis of the pur cluster of Streptomyces alboniger. J Biol Chem 271:1579–1590CrossRefGoogle Scholar
  89. Vastrad BM, Neelagund SE (2011) Optimization and production of neomycin from different agro industrial wastes in solid state fermentation. Int J Pharm Sci Drug Res 3(2):104–111Google Scholar
  90. Vastrad BM, Neelagund SE (2012) Optimization of process parameters for rifamycin b production under solid state fermentation from Amycolatopsis mediterranean MTCC14. Int J Curr Pharm Res 4(2):101–108Google Scholar
  91. Venkateswarlu G, Murali Krishna PS, Pandey A, Venkateshwar Rao L (2000) Evaluation of Amycolatopsis mediterranei VA18 for production of rifamycin-B. Process Biochem 36(4):305–309CrossRefGoogle Scholar
  92. Voelker F, Altaba S (2001) Nitrogen source governs the patterns of growth and pristinamycin production in ‘Streptomyces pristinaespiralis’. Microbiology 147(9):2447–2459Google Scholar
  93. Wei YH, Lai CC, Chang JS (2007) Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochem 42(1):40–45CrossRefGoogle Scholar
  94. Xue Y, Zhao L, Liu HW, Sherman DH (1998) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc Natl Acad Sci U S A 95(21):12111–12116CrossRefGoogle Scholar
  95. Yang SS, Kao CY (1991) Oxytetracycline production in solid state and submerged fermentation by protoplast fusants of Streptomyces rimosus. Proc Natl Sci Counc Repub China B 15(1):20–27Google Scholar
  96. Yang SS, Ling MY (1989) Tetracycline production with sweet potato residue by solid state fermentation. Biotechnol Bioeng 33:1021–1028CrossRefGoogle Scholar
  97. Yang SS, Swei WJ (1996) Cultural condition and oxytetracycline production by Streptomyces rimosus in solid state fermentation of corncob. World J Microbiol Biotechnol 12:43–46CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ganesh Kumar Arumugam
    • 1
    Email author
  • Venkatesh Selvaraj
    • 1
  • Dharani Gopal
    • 1
  • Kirubagaran Ramalingam
    • 1
  1. 1.Marine BiotechnologyNational Institute of Ocean Technology (Ministry of Earth Sciences, Govt. of India)ChennaiIndia

Personalised recommendations