Utilization of Agro-industrial Waste for the Production of Aroma Compounds and Fragrances

  • Saurabh Jyoti Sarma
  • Gurpreet Singh Dhillon
  • Krishnamoorthy Hegde
  • Satinder Kaur BrarEmail author
  • Mausam Verma


Agro-industrial wastes are unavoidable waste materials continuously generated in bulk quantity. Most of these materials can be used as nutrient source for industrial fermentation. However, commercial fermentation of low-value high-volume products generally suffer financial crisis. Alternatively, sustainable biotransformation of agro-industrial waste into fine biochemical, such as aroma compounds and fragrances, has been widely investigated. Significant variation of substrate quality imparts great variations in the production methodology of these processes. Further, a range of microorganisms are known to be used and different genetic engineering strategies have been applied for improved bioconversion. Moreover, novel strategies for detection, identification, and purification of the final products have been developed, and in some particular cases, successful commercialization has also been achieved. To have, however, further benefit from this potential strategy, a systematic study of the type and nature of the feedstock and their abundance should be evaluated. Similarly, presently used processes and their scale-up potential should be determined and different options for their economic competitiveness should be identified. The goal of this chapter, therefore, is to improve the basic understanding of the interesting strategy and to summarize the recent advancements in production of aroma compounds and fragrances.


Lactic Acid Bacterium Ferulic Acid Biotechnological Production Kluyveromyces Marxianus Sugarcane Molas 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are sincerely thankful to the Natural Sciences and Engineering Research Council of Canada (Discovery Grants 355254) and INRS-ETE for financial support. The views or opinions expressed in this article are those of the authors.


  1. Achmon Y, Goldshtein J, Margel S, Fishman A (2011) Hydrophobic microspheres for in situ removal of 2-phenylethanol from yeast fermentation. J Microencapsul 28(7):628–638. doi: 10.3109/02652048.2011.599443 CrossRefGoogle Scholar
  2. Alvandi H, Azar M (2008) Diacetyl production in batch fermentation process by lactic starter culture. Iran J Food Sci Technol 5(2):27–39Google Scholar
  3. Badcock M (2011) Sustainable recovery of pure natural vanillin from fermentation media in one step. Accessed on 30 Oct 2012
  4. Barghini P, Di Gioia D, Fava F, Ruzzi M (2007) Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb Cell Fact 6(1):13CrossRefGoogle Scholar
  5. Bassit N, Boquien C-Y, Picque D, Corrieu G (1993) Effect of initial oxygen concentration on diacetyl and acetoin production by Lactococcus lactis subsp. lactis biovar diacetylactis. Appl Environ Microbiol 59(6):1893–1897Google Scholar
  6. Benson K, Godon J, Renault P, Griffin H, Gasson M (1996) Effect of < i > ilvBN -encoded α-acetolactate synthase expression on diacetyl production in Lactococcus lactis. Appl Microbiol Biotechnol 45(1):107–111. doi: 10.1007/s00253005065 CrossRefGoogle Scholar
  7. Bicas JL, Silva JC, Dionísio AP, Pastore GM (2010) Biotechnological production of bioflavors and functional sugars. Ciência e Tecnologia de Alimentos 30(1):07–18CrossRefGoogle Scholar
  8. Bloem A, Bertrand A, Lonvaud‐Funel A, De Revel G (2007) Vanillin production from simple phenols by wine‐associated lactic acid bacteria. Lett Appl Microbiol 44(1):62–67CrossRefGoogle Scholar
  9. Boumerdassi H, Monnet C, Desmazeaud M, Corrieu G (1997) Isolation and properties of Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 mutants producing diacetyl and acetoin from glucose. Appl Environ Microbiol 63(6):2293–2299Google Scholar
  10. Bramorski A, Christen P, Ramirez M, Soccol CR, Revah S (1998) Production of volatile compounds by the edible fungus Rhizopus oryzae during solid state cultivation on tropical agro-industrial substrates. Biotechnol Lett 20(4):359–362CrossRefGoogle Scholar
  11. Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Fact 9(1):84CrossRefGoogle Scholar
  12. Chapla D, Divecha J, Madamwar D, Shah A (2010) Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem Eng J 49(3):361–369. doi: 10.1016/j.bej.2010.01.012 CrossRefGoogle Scholar
  13. Christen P, Meza J, Revah S (1997) Fruity aroma production in solid state fermentation by Ceratocystis fimbriata: influence of the substrate type and the presence of precursors. Mycol Res 101(8):911–919CrossRefGoogle Scholar
  14. Davis L, Jeon YJ, Svenson C, Rogers P, Pearce J, Peiris P (2005) Evaluation of wheat stillage for ethanol production by recombinant Zymomonas mobilis. Biomass Bioenergy 29(1):49–59CrossRefGoogle Scholar
  15. Deiana P, Cecchi L, Lodi R, Berardi E, Farris G, Fatichenti F (1990) Some aspects of diacetyl and acetoin production by Debaryomyces hansenii. Ital J Food Sci 2(1):35–42Google Scholar
  16. Dastager SG (2009) Aroma compounds, biotechnology for agro-industrial residues utilisation. In: Pandey A, Nigam P (eds) Utilisation of Agro-Residues. Springer, Netherlands, pp 105–127. doi: 10.1007/978-1-4020-9942-7_6 CrossRefGoogle Scholar
  17. Duboff SA, Kwon SS, Vadehra DV (1996) Diacetyl production. EP Patent 0,564,770Google Scholar
  18. Eshkol N, Sendovski M, Bahalul M, Katz‐Ezov T, Kashi Y, Fishman A (2009) Production of 2‐phenylethanol from L‐phenylalanine by a stress tolerant Saccharomyces cerevisiae strain. J Appl Microbiol 106(2):534–542CrossRefGoogle Scholar
  19. Etschmann M, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol 59(1):1–8CrossRefGoogle Scholar
  20. Etschmann MMW, Sell D, Schrader J (2003) Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotechnol Lett 25(7):531–536. doi: 10.1023/a:1022890119847 CrossRefGoogle Scholar
  21. Etschmann MMW, Sell D, Schrader J (2005) Production of 2-phenylethanol and 2-phenylethylacetate from L-phenylalanine by coupling whole-cell biocatalysis with organophilic pervaporation. Biotechnol Bioeng 92(5):624–634. doi: 10.1002/bit.20655 CrossRefGoogle Scholar
  22. Feron G, Bonnarme P, Durand A (1996) Prospects for the microbial production of food flavours. Trend Food Sci Technol 7(9):285–293. doi: 10.1016/0924-2244(96)10032-7 CrossRefGoogle Scholar
  23. Feron G, Waché Y (2006) Microbial biotechnology of food flavor production. Food Sci Technol 148:407, Marcel Dekker, New YorkGoogle Scholar
  24. Fornachon J, Lloyd B (2006) Bacterial production of diacetyl and actoin in wine. J Sci Food Agric 16(12):710–716CrossRefGoogle Scholar
  25. Fabre C, Blanc P, Goma G (1998) 2-Phenylethyl alcohol: an aroma profile. Perfumer flavorist 23(3):43–45Google Scholar
  26. Garc AI (1994) Modelling of diacetyl production during beer fermentation. J Inst Brew 100:179–183CrossRefGoogle Scholar
  27. Gonçalves FA, Sanjinez-Argandoña EJ, Fonseca GG (2011) Utilization of agro-industrial residues and municipal waste of plant origin for cellulosic ethanol production. J Environ Protect 2(10):1303–1309CrossRefGoogle Scholar
  28. Hua D, Ma C, Song L, Lin S, Zhang Z, Deng Z, Xu P (2007) Enhanced vanillin production from ferulic acid using adsorbent resin. Appl Microbiol Biotechnol 74(4):783–790. doi: 10.1007/s00253-006-0735-5 CrossRefGoogle Scholar
  29. Hua D, Lin S, Li Y, Chen H, Zhang Z, Du Y, Zhang X, Xu P (2010) Enhanced 2-phenylethanol production from L-phenylalanine via in situ product adsorption. Biocatal Biotransform 28(4):259–266. doi: 10.3109/10242422.2010.500724 CrossRefGoogle Scholar
  30. Hua D, Xu P (2011) Recent advances in biotechnological production of 2-phenylethanol. Biotechnol Adv 29(6):654–660. doi: 10.1016/j.biotechadv.2011.05.001 CrossRefGoogle Scholar
  31. Hugenholtz J, Kleerebezem M, Starrenburg M, Delcour J, De Vos W, Hols P (2000) Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol 66(9):4112–4114CrossRefGoogle Scholar
  32. Kaneko T, Watanabe Y, Suzuki H (1990a) Enhancement of diacetyl production by a diacetyl-resistant mutant of citrate-positive Lactococcus lactis ssp. lactis 3022 and by aerobic conditions of growth. J Dairy Sci 73(2):291–298. doi: 10.3168/jds.S0022-0302(90)78672-9 CrossRefGoogle Scholar
  33. Kaneko T, Takahashi M, Suzuki H (1990b) Acetoin fermentation by citrate-positive Lactococcus lactis subsp. lactis 3022 grown aerobically in the presence of hemin or Cu2+. Appl Environ Microbiol 56(9):2644–2649Google Scholar
  34. Koma D, Yamanaka H, Moriyoshi K, Ohmoto T, Sakai K (2012) Production of aromatic compounds by metabolically engineered Escherichia coli with shikimate pathway expansion. Appl Environ Microbiol 78:6203–6216. doi: 10.1128/aem.01148-12 CrossRefGoogle Scholar
  35. Krings U, Berger R (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8CrossRefGoogle Scholar
  36. Li YH, Sun ZH, Zhao LQ, Xu Y (2005) Bioconversion of isoeugenol into vanillin by crude enzyme extracted from soybean. Appl Biochem Biotechnol 125(1):1–10CrossRefGoogle Scholar
  37. Liu Y, Zhang S, Yong YC, Ji Z, Ma X, Xu Z, Chen S (2011) Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochem 46(1):390–394CrossRefGoogle Scholar
  38. Longo MA, Sanromán MA (2006) Production of food aroma compounds: microbial and enzymatic methodologies. Food Technol Biotechnol 44(3):335–353Google Scholar
  39. Mameeva O, Ostapchuk A, Podgorsky V (2010) The 2-phenylethanol and ethanol production by yeast Saccharomyces cerevisiae. Accessed on 17 Nov 2012
  40. Medeiros ABP, Pandey A, Freitas RJS, Christen P, Soccol CR (2000) Optimization of the production of aroma compounds by Kluyveromyces marxianus in solid-state fermentation using factorial design and response surface methodology. Biochem Eng J 6(1):33–39. doi: 10.1016/s1369-703x(00)00065-6 CrossRefGoogle Scholar
  41. Monnet C, Schmilt P, Divies C (1994) Diacetyl production in milk by an α-acetolactic acid accumulating strain of Lactococcus lactis ssp. lactis biovar. diacetylactis. J Dairy Sci 77(10):2916–2924. doi: 10.3168/jds.S0022-0302(94)77232-5 CrossRefGoogle Scholar
  42. Nadal I, Rico J, Pérez-Martínez G, Yebra M, Monedero V (2009) Diacetyl and acetoin production from whey permeate using engineered Lactobacillus casei. J Ind Microbiol Biotechnol 36(9):1233–1237CrossRefGoogle Scholar
  43. Pandey A, Soccol CR, Nigam P, Soccol VT, Vandenberghe LPS, Mohan R (2000) Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresour Technol 74(1):81–87CrossRefGoogle Scholar
  44. Philippoussis AN (2009) Production of mushrooms using agro-industrial residues as substrates. Biotechnology for agro-industrial residues utilisation. Springer, Netherlands, pp 163–196CrossRefGoogle Scholar
  45. Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56(3):296–314. doi: 10.1007/s002530100687 CrossRefGoogle Scholar
  46. Quach AT, Liu C, Davies IY, Elston LD (2012) Toxicology report for Diacetyl. Accessed on 17 Nov 2012
  47. Ramachandra Rao S, Ravishankar G (2000) Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 80:289–304CrossRefGoogle Scholar
  48. Rong S, Ding B, Zhang X, Zheng X, Wang Y (2011) Enhanced biotransformation of 2-phenylethanol with ethanol oxidation in a solid–liquid two-phase system by active dry yeast. Curr Microbiol 63(5):503–509. doi: 10.1007/s00284-011-0008-0 CrossRefGoogle Scholar
  49. Rossi S, Vandenberghe L, Pereira B, Gago F, Rizzolo J, Pandey A, Soccol C, Medeiros A (2009) Improving fruity aroma production by fungi in SSF using citric pulp. Food Res Int 42(4):484–486CrossRefGoogle Scholar
  50. Ruanglek V, Maneewatthana D, Tripetchkul S (2006) Evaluation of Thai agro-industrial wastes for bio-ethanol production by Zymomonas mobilis. Process Biochem 41(6):1432–1437CrossRefGoogle Scholar
  51. Sarangi PK, Nanda S, Sahoo H (2010) Maximization of vanillin production by standardizing different cultural conditions for ferulic acid degradation. NY Sci J 3(7):77–79Google Scholar
  52. Sasaki K, Noparatnaraporn N, Nagai S, Martin A (1991) Use of photosynthetic bacteria for the production of SCP and chemicals from agroindustrial wastes. Bioconversion of waste materials to industrial products. Elsevier, New York, NY, pp 225–264Google Scholar
  53. Savina JP, Kohler D, Brunerie P (1999) Method for extracting 2-phenylethanol. Google PatentsGoogle Scholar
  54. Sendovski M, Nir N, Fishman A (2010) Bioproduction of 2-phenylethanol in a biphasic ionic liquid aqueous system. J Agric Food Chem 58(4):2260–2265. doi: 10.1021/jf903879x CrossRefGoogle Scholar
  55. Serp D, von Stockar U, Marison IW (2003) Enhancement of 2-phenylethanol productivity by Saccharomyces cerevisiae in two-phase fed-batch fermentations using solvent immobilization. Biotechnol Bioeng 82(1):103–110. doi: 10.1002/bit.1054 CrossRefGoogle Scholar
  56. Sindhwani G, Ilyas U, Aeri V (2012) Microbial transformation of eugenol to vanillin. J Microbiol Biotechnol Res 2(2):313–318Google Scholar
  57. Soares M, Christen P, Pandey A, Soccol CR (2000) Fruity flavour production by Ceratocystis fimbriata grown on coffee husk in solid-state fermentation. Process Biochem 35(8):857–861CrossRefGoogle Scholar
  58. Sun J, Zhang L, Rao B, Han Y, Chu J, Zhu J, Shen Y, Wei D (2012) Enhanced acetoin production by Serratia marcescens H32 using statistical optimization and a two-stage agitation speed control strategy. Biotechnol Bioprocess Eng 17(3):598–605CrossRefGoogle Scholar
  59. Swindell SR, Benson KH, Griffin HG, Renault P, Ehrlich S, Gasson MJ (1996) Genetic manipulation of the pathway for diacetyl metabolism in Lactococcus lactis. Appl Environ Microbiol 62(7):2641–2643Google Scholar
  60. Teixeira R, Cavalheiro D, Ninow J, Furigo A Jr (2002) Optimization of acetoin production by Hanseniaspora guilliermondii using experimental design. Braz J Chem Eng 19(2):181–186CrossRefGoogle Scholar
  61. Wang H, Dong Q, Guan A, Meng C, Xa S, Guo Y (2011) Synergistic inhibition effect of 2-phenylethanol and ethanol on bioproduction of natural 2-phenylethanol by Saccharomyces cerevisiae and process enhancement. J Biosci Bioeng 112(1):26–31. doi: 10.1016/j.jbiosc.2011.03.006 CrossRefGoogle Scholar
  62. Wittmann C, Hans M, Bluemke W (2002) Metabolic physiology of aroma‐producing Kluyveromyces marxianus. Yeast 19(15):1351–1363CrossRefGoogle Scholar
  63. Xiao Z, Liu P, Qin JY, Xu P (2007) Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Appl Microbiol Biotechnol 74(1):61–68CrossRefGoogle Scholar
  64. Xu P, Hua D, Ma C (2007) Microbial transformation of propenylbenzenes for natural flavour production. Trends Biotechnol 25(12):571–576CrossRefGoogle Scholar
  65. Xu H, Jia S, Liu J (2011a) Production of acetoin by Bacillus subtilis TH-49. In: Consumer Electronics, Communications and Networks (CECNet), International Conference, 2011, IEEE, pp 1524–1527Google Scholar
  66. Xu H, Jia S, Liu J (2011b) Development of a mutant strain of Bacillus subtilis showing enhanced production of acetoin. Afr J Biotechnol 10(5):779–788Google Scholar
  67. Yiyong DUYZZZ, Hong C (2011) A new bioprocess to produce natural vanillin by microbial fermentation. Flavour Frag Cosmet 3:003Google Scholar
  68. Zhang Y, Li S, Liu L, Wu J (2012a) Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. Bioresource Technol 130:256–260. Google Scholar
  69. Zhang L, Chen S, Xie H, Tian Y, Hu K (2012b) Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. J Chem Technol Biotechnol 87(11):1551–1557CrossRefGoogle Scholar
  70. Zheng L, Zheng P, Sun Z, Bai Y, Wang J, Guo X (2007) Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresour Technol 98(5):1115–1119CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Saurabh Jyoti Sarma
    • 1
  • Gurpreet Singh Dhillon
    • 2
    • 1
  • Krishnamoorthy Hegde
    • 3
  • Satinder Kaur Brar
    • 1
    Email author
  • Mausam Verma
    • 4
  1. 1.INRS-ETEUniversité du QuébecQuébecCanada
  2. 2.Biorefining Conversions Network (BCN), Department of Agricultural, Food and Nutritional Sciences (AFNS)University of AlbertaEdmontonCanada
  3. 3.Department of BiotechnologyIIT GuwahatiAssamIndia
  4. 4.CO2 SolutionsQuébec cityCanada

Personalised recommendations