Pretreatment Strategies to Enhance Value Addition of Agro-industrial Wastes

  • Adenise Lorenci Woiciechowski
  • Susan Grace Karp
  • Keli Sobral
  • Júlio Cesar de Carvalho
  • Luiz Alberto Junior Letti
  • Vanete Tomaz Soccol
  • Carlos Ricardo SoccolEmail author


Due to economic, technical, and environmental reasons, the demand for liquid fuels all around the world is constantly increasing; bioethanol and other biofuels from lignocellulosic biomass might be one of the most important solutions for this proposal. Although biomass may be cheap, its processing costs may be high. Many technologies for converting biomass into biofuel have been developed, which include the physical pretreatment of biomass, acid or enzymatic saccharification of the pretreated biomass, and fermentation of the hexose and pentose released by hydrolysis and saccharification. In this chapter, the most frequently used and new physicochemical and biological pretreatment methods of lignocellulosic biomass are discussed.


Sugarcane Bagasse Solid State Fermentation Equilibrium Moisture Content Steam Explosion Veratryl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achargee TC, Coronella CJ, Vasquez VR (2011) Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresour Technol 102(7):4849–4854CrossRefGoogle Scholar
  2. Al-Kassir A, Gañan J, Tinaut FV (2005) Theoretical and experimental study of a direct contact thermal screw dryer for biomass residues. Appl Therm Eng 25(17–18):2816–2826CrossRefGoogle Scholar
  3. Autore F, Del Vecchio C, Fraternali F, Giardina P, Sannia G, Faraco V (2009) Molecular determinants of peculiar properties of a Pleurotus ostreatus laccase: analysis by site-directed mutagenesis. Enzym Microb Tech 45:507–513CrossRefGoogle Scholar
  4. Arabhosseini A, Huisman W, Müller J (2010) Modeling of the equilibrium moisture content (EMC) of Miscanthus (Miscanthus × giganteus). Biomass Bioenergy 34(4):411–416CrossRefGoogle Scholar
  5. Balat M, Balat H, Cahide OZ (2008) Progress in bioethanol processing. Progr Energ Combust Sci 34:551–573CrossRefGoogle Scholar
  6. Bals B, Rogers C, Jin M, Balan V, Dale B (2010) Evaluation of ammonia fiber expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol Biofuels. doi: 10.1186/1754-6834-3-1 Google Scholar
  7. Binod P, Satyanagalakshmi K, Sindhu R, Janu KU, Sukumaran RK, Pandey A (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew Energy 37:109–116CrossRefGoogle Scholar
  8. Bapiraju KVSN, Sujatha P, Ellaiah P, Ramana T (2004) Mutation induced enhanced biosynthesis of lipase. Afr J Biotechnol 3(11):618–621Google Scholar
  9. Carioca JOB, Arora HL (1984) Biomassa: fundamento e aplicações tecnológicas. UFC, FortalezaGoogle Scholar
  10. Chen WH, Ye SC, Sheen HK (2012) Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl Energ 93:237–244. doi: 10.1016/j.apenergy.2011.12.014 CrossRefGoogle Scholar
  11. Cheung SW, Anderson BC (1997) Laboratory investigation of ethanol production from municipal primary wastewater. Bioresour Technol 59:81–96CrossRefGoogle Scholar
  12. Coulson JM, Richardson JF (1991) Chemical engineering, vol II. Oxford, Pergamon, LondresGoogle Scholar
  13. Couto SR, Herrera JLT (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513CrossRefGoogle Scholar
  14. Del Bianchi VL, Moraes IO, Capalbo DMF (2001) Fermentação em estado sólido. In: Schmidell W, Lima UA, Aquarone E, Borzani W (eds) Biotecnologia industrial: engenharia bioquímica. Edgard Blücher Ltda, São Paulo, pp 247–276Google Scholar
  15. Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technnol 55:1–33CrossRefGoogle Scholar
  16. Dwivedi P, Vivekanand V, Pareek N, Sharma A, Singh RP (2011) Co-cultivation of mutant Penicillium oxalicum SAUE-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state. N Biotechnol 28:616–626. doi: 10.1016/j.nbt.2011.05.006 CrossRefGoogle Scholar
  17. Fan LT, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis, 1st edn. Springer, New YorkCrossRefGoogle Scholar
  18. Fioretin LD, Menon BT, Barros STD, Pereira NC, Lima OC, Modenes AO (2010) Isotermas de sorção do resíduo agroindustrial do bagaço de laranja. Rev Brasileira de engenharia agrícola e ambiental 14(6):653–659Google Scholar
  19. Foust AS et al (1960) Principles of unit operations. Wiley, New YorkGoogle Scholar
  20. Gámez S, González JJ, Ramírez JA, Garrote G, Vázquez M (2006) Study of the sugarcane bagasse hydrolysis by using phosphoric acid. J Food Eng 74:78–88CrossRefGoogle Scholar
  21. Gauto MA, Rosa GR (2011) Processos e operações unitárias da indústria Química. Ciência Moderna Ltda, Rio de JaneiroGoogle Scholar
  22. Giardina P, Palmieri G, Fontanella B, Rivieccio V, Sannia G (2000) Manganese peroxidase isoenzymes produced by Pleurotusostreatus grown on wood sawdust. Arch Biochem Biophys 376(1):171–179CrossRefGoogle Scholar
  23. Glasser WG, Wright RS (1997) Steam-assisted biomass fractionation. II. Fractionation behavior of various biomass resources. Biomass Bioenergy 14:219–235CrossRefGoogle Scholar
  24. Gomide R (1983) Operações unitárias: operações com sistemas sólidos granulares (1). Cempro, São PauloGoogle Scholar
  25. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRefGoogle Scholar
  26. Hernández-Salas JM, Villa-Ramírez MS, Veloz-Rendón JS, Rivera-Hernández KN, González-César RA, Plascencia-Espinosa MA, Trejo-Estrada SR (2009) Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour Technol 100:1238–1245CrossRefGoogle Scholar
  27. Higushi T (1989) Mechanisms of lignin degradation by lignin peroxidase and laccase of white-rot fungi. In: Lewis NG, Paice MG (eds) Plant cell wall polymers, biogenesis and biodegradation, vol 399. ACS Symposium Series, Washington, pp 482–502CrossRefGoogle Scholar
  28. Izumi K, Okishio Y, Nagao N, Niwa C, Yamamoto S, Toda T (2010) Effects of particle size on anaerobic digestion of food waste. Int Biodeter Biodegr 64(7):601–608CrossRefGoogle Scholar
  29. Kallemullah S, Kailappan R (2004) Moisture sorption isotherm of red chillies. Biosystems Eng 88(1):95–104CrossRefGoogle Scholar
  30. Kartikaa IA, Yulianib S, Kailakub SI, Rigalc L (2012) Moisture sorption behaviour of jatropha seed (Jatropha curcas) as a source of vegetable oil for biodiesel production. Biomass Bioenergy 36:226–233CrossRefGoogle Scholar
  31. Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2010) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J 46:126–131CrossRefGoogle Scholar
  32. Krishnan C, Sousa LC, Jin M, Chang L, Dale BE, Balan V (2010) Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng 107(3):441–450CrossRefGoogle Scholar
  33. Kumar D, Jain VK, Shanker G, Srivastava A (2003) Citric acid production by solid state fermentation using sugarcane bagasse. Process Biochem 38(12):1731–1738CrossRefGoogle Scholar
  34. Laopoolkit P, Suwannaporn P (2011) Effect of pretreatments and vacuum drying on instant dried pork process optimization. Meat Sci 88:553–558CrossRefGoogle Scholar
  35. Lavarack BP, Griffin GJ (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23:367–380CrossRefGoogle Scholar
  36. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24CrossRefGoogle Scholar
  37. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642CrossRefGoogle Scholar
  38. Marrison CI, Larson ED (1995) Cost versus scale for advanced plantation-based biomass energy systems in the US. EPA symposium on greenhouse emissions and mitigation research, WashingtonGoogle Scholar
  39. Mathew GM, Sukumaran RK, Singhania RR, Pandey A (2008) Progress in research on fungal cellulases for lignocellulose degradation. J Sci Ind Res 67:898–907Google Scholar
  40. Mc Cabe WL, Smith JC, Harriot P (1993) Unit operations in chemical engineering, 5th edn. Book Company, New YorkGoogle Scholar
  41. Mesa L, González E, Cara C, González M, Castro E, Mussatto SI (2011) The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J 168:1157–1162CrossRefGoogle Scholar
  42. Montross M, Crofcheck C (2010) Energy crops for the production of biofuels. In: Thermochemical conversion of biomass to liquid fuels and chemicals. Crocker M (ed). RSC, London pp 26–45Google Scholar
  43. Mosier N, Wyman C, Dale BE, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefGoogle Scholar
  44. Novo LP, Gurgel LVA, Marabezi K, Aprigio A, Curvelo S (2011) Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification. Bioresour Technol 102:10040–10046CrossRefGoogle Scholar
  45. Öhgren K, Vehmaanperä J, Siika-Aho M, Galbe M, Viikari L, Zacchi G (2007) High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzym Microb Tech 40(4):607–613CrossRefGoogle Scholar
  46. Pandey A (1991) Effect of particle size of substrate on enzyme production in solid-state fermentation. Bioresour Technol 37(2):169–172Google Scholar
  47. Perry RH, Green DV, Maloney JO (1997) Chemical engineers’ handbook, 7th edn. McGraw-Hill, MalasiaGoogle Scholar
  48. Pessoa A Jr, Kilikian BV (2005) Purificação de Produtos Biotecnológicos. Manole, São PauloGoogle Scholar
  49. Ramos LP, Breuil C, Kushner DJ, Saddler JN (1992) Steam pretreatment conditions for effective enzymatic hydrolysis and recovery yields of Eucalyptus viminalis wood chips. Holzforschung 46:149–154CrossRefGoogle Scholar
  50. Ramos LP, Carpes ST, Silva FT, Ganter JLMS (2000) Comparison of the susceptibility of two hardwood species, Mimosa scabrellaBenth and Eucalyptus viminalisLabill, to steam explosion and enzymatic hydrolysis. Braz Arch Biol Tech 43:185–206Google Scholar
  51. Rocha GJM, Gonçalves AR, Oliveira BR, Olivares EG, Rossell CEV (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crop Prod 35:274–279CrossRefGoogle Scholar
  52. Rodríguez-Chong A, Ramírez JA, Garrote G, Vázquez M (2004) Hydrolysis of sugarcane bagasse using nitric acid: a kinetic assessment. J Food Eng 61:143–152CrossRefGoogle Scholar
  53. Ruiz HA, Rodríguez-Jasso RM, Rodríguez R, Contreras-Esquivel JC, Aguilar CN (2012) Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem Eng J 65:90–95CrossRefGoogle Scholar
  54. Santos SFM, Wanderley LR, Souza RLA, Pinto GAS, Silva FLH, Macedo GR (2005) Caracterização físico-química do pedúnculo de caju in natura e do resíduo seco. In: 1th Simpósio Brasileiro de Pós-colheita de Frutos Tropicais. SBF, João Pessoa-PB, 29 November – 02 December 2005 (CD Rom)Google Scholar
  55. Searcy E, Flynn P, Ghafoori E, Kumar A (2007) The relative cost of biomass energy transport. Appl Biochem Biotechnol 140:639–652CrossRefGoogle Scholar
  56. Silva I.S, Menezes CR, Franciscon E, Santos EC, Durrant LR (2010) Degradation of lignosulfonic and tannic acids by ligninolytic soil fungi cultivated under icroaerobic conditions. Brazilian Archives of Biology and Tech 53(3)
  57. Soccol CR, Faraco V, Karp S, Vandenberghe LPS, Thomaz-Soccol V, Woiciechowski AL, Pandey A (2011) Lignocellulosic bioethanol: current status and future perspectives. In: Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansounou E (eds) Biofuels: alternative feedstocks and conversion processes. Academic, San Diego, pp 101–122Google Scholar
  58. Souza RA, Amorim BC, Silva FLH, Conrado L (2007) Caracterização do resíduo seco do maracujá para utilização em fermentação semi-sólida. In: 16th Simpósio Nacional de Bioprocessos. Federal University of Paraná, Curitiba, 1–5 August 2007 (CD Rom)Google Scholar
  59. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefGoogle Scholar
  60. Tuor U, Winterhalter K, Fiechter A (1995) Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol 41:1–17CrossRefGoogle Scholar
  61. Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209CrossRefGoogle Scholar
  62. Yuan X, Shi X, Zhang P, Wei Y, Guo R, Wang L (2011) Anaerobic biohydrogen production from wheat stalk by mixed microflora: kinetic model and particle size influence. Bioresour Technol 102(19):9007–9012CrossRefGoogle Scholar
  63. Zhang YP, Ding S, Mielenz JR, Cui J (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97:214–223CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Adenise Lorenci Woiciechowski
    • 1
  • Susan Grace Karp
    • 1
  • Keli Sobral
    • 1
  • Júlio Cesar de Carvalho
    • 1
  • Luiz Alberto Junior Letti
    • 1
  • Vanete Tomaz Soccol
    • 1
  • Carlos Ricardo Soccol
    • 1
    Email author
  1. 1.Biotechnology and Bioprocess Engineering Department, Centro PolitecnicoFederal University of ParanaCuritibaBrazil

Personalised recommendations