Flat Space: Fourier Analysis on \({\mathbb{R}}^{m}\)

  • Audrey Terras


There was no time to waste. It’s possible to grasp alef-null-sized collections once you’re in your aethereal body…but you need some to look at. My job right now was to generate infinities.


  1. 1.
    C. C. Adams, The Knot Book, Freeman, N.Y., 1994.MATHGoogle Scholar
  2. 2.
    L. M. Adleman, C. Pomerance, and R.S. Rumely, On distinguishing prime numbers from composite numbers, Annals of Math, (2), 117 (1983), 173–206.Google Scholar
  3. 3.
    L. Ahlfors, Complex Analysis, McGraw-Hill, N.Y., 1979.MATHGoogle Scholar
  4. 4.
    M. Alsina and P. Bayer, Quaternion orders, quadratic forms, and Shimura curves, volume 22 of CRM Monograph Series, American Mathematical Society, Providence, RI, 2004.Google Scholar
  5. 5.
    J. Altman, Microwave Circuits, Van Nostrand, Princeton, NJ, 1964.Google Scholar
  6. 6.
    R. J. Anderson, On the Mertens conjecture for cusp forms, Mathematika, 26 (1979), 236–249; 27 (1980), 261.Google Scholar
  7. 7.
    T. W. Anderson, An Introduction to Multivariate Statistical Analysis, Wiley, NY, 1958.MATHGoogle Scholar
  8. 8.
    A. N. Andrianov, On zeta functions of Rankin type associated with Siegel modular forms, Lecture Notes in Math., 627, Springer-Verlag, NY, 1977, 325–338.Google Scholar
  9. 9.
    J. Angel, Finite upper half planes over finite fields, Finite Fields Applics., 2 (1996), 62–86.MathSciNetMATHGoogle Scholar
  10. 10.
    T. Apostol, Calculus, Vols. I and II, Blaisdell, Waltham, MA, 1967.Google Scholar
  11. 11.
    T. Apostol, Mathematical Analysis, Addison-Wesley, NY, 1974.MATHGoogle Scholar
  12. 12.
    T. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, NY, 1976.MATHGoogle Scholar
  13. 13.
    G. Arfken, Mathematical Methods for Physicists, Academic, NY, 1970.Google Scholar
  14. 14.
    E. Artin, Collected Papers, Addison-Wesley, Reading, MA, 1965.MATHGoogle Scholar
  15. 15.
    J. M. Ash (Ed.), Studies in Harmonic Analysis, Vol. 13, M.A.A. Studies in Math., Math. Assoc. of America, Wash., D.C., 1976.Google Scholar
  16. 16.
    A. O. Atkin and J. Lehner, Hecke operators on Γ 0(N), Math. Ann., 185 (1970), 134–160.MathSciNetMATHGoogle Scholar
  17. 17.
    L. Auslander, Differential Geometry, Harper and Row, N.Y., 1967.MATHGoogle Scholar
  18. 18.
    L. Auslander et al., Flows on Homogeneous Spaces, Princeton U. Press, Princeton, NJ, 1963.MATHGoogle Scholar
  19. 19.
    G. Backus and F. Gilbert, The rotational splitting of the free oscillations of the Earth, Proc. Natl. Acad. Sci., 47 (1961), 362–371.MATHGoogle Scholar
  20. 20.
    A. J. Baden Fuller, Microwaves, Pergamon, Oxford, UK, 1979.Google Scholar
  21. 21.
    A. Baker, Transcendental Number Theory, Cambridge U. Press, Cambridge, 1975.MATHGoogle Scholar
  22. 22.
    E. Bannai, Character tables of commutative association schemes, in Finite Geometries, Buildings, and Related Topics, (W. M. Kantor, et al, Eds.), Clarendon Press, Oxford, 1990, pp. 105–128.Google Scholar
  23. 23.
    D. Barbasch, Fourier inversion for unipotent invariant integrals, Trans. Amer. Math. Soc., 249 (1979), 51–83.MathSciNetMATHGoogle Scholar
  24. 24.
    D. Barbasch, Fourier transforms of some invariant distributions on a semi-simple Lie group, Lecture Notes in Math., 728, Springer-Verlag, NY, 1979, 1–7.Google Scholar
  25. 25.
    V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math., 48 (1957), 568–640.MathSciNetGoogle Scholar
  26. 26.
    T. Barnet-Lamb, D. Geraghty, M. Harris, and R. Taylor, A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci., 47 (2011), no. 1, 29–98.1663–4926.Google Scholar
  27. 27.
    P. Barrucand, H. Williams, and L. Baniuk, A computational technique for determining the class number of a pure cubic field, Math. Comp., 30 (1976), 312–323.MathSciNetMATHGoogle Scholar
  28. 28.
    A. O. Barut and R. Raçzka, Theory of Group Representations and Applications, Polish Scientific Pub., Warsaw, Poland, 1977.Google Scholar
  29. 29.
    H. Bass, The congruence subgroup problem, in TA. Springer (Ed.), Proc. of Conf. in Local Fields, Springer-Verlag, NY, 1967, 16–22.Google Scholar
  30. 30.
    P. T. Bateman and E. Grosswald, On Epstein’s zeta function, Acta Arith., 9 (1964), 365–373.MathSciNetGoogle Scholar
  31. 31.
    A. F. Beardon, The Geometry of Discrete Groups, Springer, NY, 1983.MATHGoogle Scholar
  32. 32.
    T. Bedford, M. Keane and C. Series, Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford U. Press, Oxford, UK, 1991.MATHGoogle Scholar
  33. 33.
    R. Bellman, A Brief Introduction to Theta Functions, Holt, Rinehart and Winston, NY, 1961.MATHGoogle Scholar
  34. 34.
    J. J. Benedetto, Harmonic Analysis and its Applications, CRC Press, Boca Raton, FL, 1997.Google Scholar
  35. 35.
    J. J. Benedetto and M. W. Frazier, Wavelets: Mathematics and Applications, CRC Press, Boca Raton, FL, 1994.MATHGoogle Scholar
  36. 36.
    M. Berger, Geometry of the spectrum, I, Proc. Symp. Pure Math., Vol. 27, Pt. II., Amer. Math. Soc., Providence, RI, 1975, 129–152.Google Scholar
  37. 37.
    J. Bernstein and S. Gelbart, An Introduction to the Langlands Program, Birkhäuser, Boston, MA, 2004.Google Scholar
  38. 38.
    A. T. Bharucha-Reid, Probabilistic Methods in Applied Math., Vol. 1, Academic, NY, 1968.Google Scholar
  39. 39.
    L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, Theory and Application, Addison-Wesley, Reading, MA, 1981.MATHGoogle Scholar
  40. 40.
    J. L. Birman, Theory of crystal space groups and infra-red Raman lattice processes of insulating crystals, in S. Flugge, (Ed.), Encyl. of Physics, Vol. XXV/2b, Springer-Verlag, NY, 1974.Google Scholar
  41. 41.
    J. Birman and R. Williams, Knotted periodic orbits in dynamical systems. I. Lorenz’s equations, Topology 22 (1983), 47–82.Google Scholar
  42. 42.
    P. Bloomfield, Fourier Analysis of Time Series, Wiley, NY, 1976.MATHGoogle Scholar
  43. 43.
    S. Bochner, Lectures on Fourier Integrals, Princeton U. Press, Princeton, NJ, 1959.MATHGoogle Scholar
  44. 44.
    S. Bochner, Review of L. Schwartz, Théorie des distributions, Bull. Amer. Math. Soc., 58 (1952), 78–85.Google Scholar
  45. 45.
    H. Boerner, Group Representations, Springer-Verlag, NY, 1955.Google Scholar
  46. 46.
    E. Bogomolny, Quantum and arithmetical chaos, ArXiv, 23 Dec. 2003.Google Scholar
  47. 47.
    J. Bolte and F. Steiner, Eds., Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology, Cambridge U. Press, Cambride, UK, 2012.MATHGoogle Scholar
  48. 48.
    A. R. Booker, A, Strömbergsson, and A. Venkatesh, Effective Computation of Maass Cusp Forms, InternationalMathematics Research Notices, Volume 2006, Article ID 71281, Pages 1–34Google Scholar
  49. 49.
    R. E. Borcherds, “What is Moonshine”, Proc. Internat. Congress Math. (Berlin, 1998), pp. 607–615 (Doc. Math. Extra Vol. 1.Google Scholar
  50. 50.
    J. Border, Nonlinear Hardy Spaces and Electrical Power Transfer, Ph.D. Thesis, U.C.S.D., 1979.Google Scholar
  51. 51.
    A. Borel, Arithmetic properties of algebraic groups, Proc. Internatl. Cong. Math., Stockholm, 1962.Google Scholar
  52. 52.
    A. Borel and W. Casselman, Automorphic Forms, Representations, and L-Functions, Proc. Symp. Pure Math., 33, A.M.S., Providence, RI, 1979.Google Scholar
  53. 53.
    A. Borel, S. Chowla, et al., Seminar on Complex Multiplication, Lecture Notes in Math, 21, Springer-Verlag, N.Y., 1966.Google Scholar
  54. 54.
    A. Borel and G. Mostow, Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math., 9, A.M.S., Providence, RI, 1966.Google Scholar
  55. 55.
    A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Math. Surveys and Monographs, Vol. 67, Amer. Math. Soc., Providence, RI, 2000.Google Scholar
  56. 56.
    Z. I. Borevitch and I. R Shafarevitch, Number Theory, Academic, NY, 1966.Google Scholar
  57. 57.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford U. Press, London, 1956.Google Scholar
  58. 58.
    P. Bougerol, Comportement asymptotique des puissances de convolution d’une probabilité sur un espace symétrique, Astérisque, 74 (1980), 29–45.MathSciNetMATHGoogle Scholar
  59. 59.
    P. Bousquet, Spectroscopy and its Instrumentation, Hilger, London, 1971.Google Scholar
  60. 60.
    R. Bowen, The equidistribution of closed geodesics, Amer. J. Math., 94 (1972), 413–423.MathSciNetMATHGoogle Scholar
  61. 61.
    R. Bracewell, The Fourier Transform and its Applications, McGraw-Hill, NY, 1965.MATHGoogle Scholar
  62. 62.
    R. Bracewell, Fourier Analysis and Imaging, Kluwer, NY, 2003.MATHGoogle Scholar
  63. 63.
    O. Bratteli and P. E. T. Jorgensen, Wavelets Through a Looking Glass: TheWorld of the Spectrum, Birkhauser Boston, Boston, MA, 2002.Google Scholar
  64. 64.
    M. Braun, Differential Equations and Their Applications, 4th Ed., Springer, NY, 1993.MATHGoogle Scholar
  65. 65.
    R. P. Brent, On the zeros of the Riemann zeta function, Math. Comp., 33 (1979), 1361–1372.MathSciNetMATHGoogle Scholar
  66. 66.
    C. Breuil, B. Conrad, F. Diamond and R.Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc., 14 (2001), 843–939.Google Scholar
  67. 67.
    E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, N.J., 1974.MATHGoogle Scholar
  68. 68.
    R. W. Bruggeman, Fourier Coefficients of Automorphic Forms, Lecture Notes in Math., 865, Springer-Verlag, NY, 1981.Google Scholar
  69. 69.
    R. W. Bruggeman, Fourier coefficients of cusp forms, Inv. Math., 45 (1978), 1–18.MathSciNetMATHGoogle Scholar
  70. 70.
    R. W. Bruggeman, Kuznetsov’s Proof of the Ramanujan-Petersson conjecture for modular Forms of Weight Zero, Math. Inst., Rijksuniversiteit, Utrecht (8–1979). (An error has since been found in the proof.)Google Scholar
  71. 71.
    D. Bump, Automorphic Forms and Representations, Cambridge U. Press, Cambridge, UK, 1997.Google Scholar
  72. 72.
    H. Burkhardt, Trigonometrische Reihen und Integrale (bis etwa 1850), Enzycl. der Math. Wissen., Teubner, Leipzig, 1916.Google Scholar
  73. 73.
    R. Burridge and G. Papanicolaou, The geometry of coupled mode propagation in one- dimensional random media, Comm. Pure Appl. Math., 25 (1972), 715–757.MathSciNetMATHGoogle Scholar
  74. 74.
    P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkhäuser, Boston, 1992.MATHGoogle Scholar
  75. 75.
    L. Carleson, On the convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), 135–157.MathSciNetMATHGoogle Scholar
  76. 76.
    G. F. Carrier, M. Krook, and C. E. Pearson, Functions of a Complex Variable, McGraw-Hill, NY, 1966.MATHGoogle Scholar
  77. 77.
    P. Cartier, Some numerical computations relating to automorphic functions, in A.O. Atkin and B. Birch (eds.), Computers in Number Theory, Academic, NY, 1971.Google Scholar
  78. 78.
    P. Cartier and D. Hejhal, Sur les zéros de la fonction zêta de Selberg, Inst. des Hautes Études Sci., preprint (1979).Google Scholar
  79. 79.
    J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Thompson, Washington, D.C., 1967.MATHGoogle Scholar
  80. 80.
    G. W. Castellan, Physical Chemistry, Addison-Wesley, Reading, MA, 1971.Google Scholar
  81. 81.
    T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Harmonic Analysis on Finite Groups, Cambridge U. Press, Cambridge, 2008.MATHGoogle Scholar
  82. 82.
    N. Celniker, S. Poulos, A. Terras, C. Trimble, and E. Velasquez, Is there life on finite upper half planes?, Contemp. Math., Vol. 143 (1993), 65–88.MathSciNetGoogle Scholar
  83. 83.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford U. Press, London, UK, 1961.MATHGoogle Scholar
  84. 84.
    I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, Orlando, 1984.MATHGoogle Scholar
  85. 85.
    C. Chevalley, Theory of Lie Groups, Princeton U. Press, Princeton, NJ, 1946.MATHGoogle Scholar
  86. 86.
    P. Chiu, Covering with Hecke points, Journal of Number Theory, 53 (1995) 25–44.MathSciNetMATHGoogle Scholar
  87. 87.
    Y. Choquet-Bruhat, C. Dewitt-Morette, and M. Dillard-Bleick, Analysis, Manifolds, and Physics, North-Holland, NY, 1977.MATHGoogle Scholar
  88. 88.
    S. Chowla and A. Selberg, On Epstein’s zeta function, J. Reine und Angew. Math., 227 (1978), 86–110.MathSciNetGoogle Scholar
  89. 89.
    R. V. Churchill and J. W. Brown, Fourier Series and Boundary Value Problems, McGraw- Hill, NY, 1978.MATHGoogle Scholar
  90. 90.
    B. Cipra, Parlez-vous Wavelets? in What’s Happening in the Mathematical Sciences, Vol. 2 (1994), AMS, Providence, RI, 1994, pp. 23–26.Google Scholar
  91. 91.
    P. Clark and J. Voight, Algebraic curves uniformized by congruence subgroups of triangle groups, preprint.Google Scholar
  92. 92.
    J. L. Clerc and B. Roynette, Un théorème central limite, Lecture Notes in Math., 739, Springer-Verlag, NY, 1979, 122–131.Google Scholar
  93. 93.
    L. Clozel, M. Harris, R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations. With Appendix A, summarizing work of R. Mann, and Appendix B by M.-F. Vignéras, Publ.Math. Inst.Hautes Études Sci., No. 108 (2008), 1–181.Google Scholar
  94. 94.
    J. Coates, p-adic L-functions and Iwasawa’s theory, in Algebraic Number Fields, A. Frohlich (Ed.), Academic, London, 1977, 269–354.Google Scholar
  95. 95.
    H. Cohen, A Course in Computational Algebraic Number Theory, Springer, Berlin, 1993.MATHGoogle Scholar
  96. 96.
    J. E. Cohen, Ergodic theorems in demography, Bull. Amer. Math. Soc. 1, (1979), 275– 295.MathSciNetMATHGoogle Scholar
  97. 97.
    H. Cohn, A Classical Invitation to Algebraic Numbers and Class Fields, Springer-Verlag, NY, 1978.Google Scholar
  98. 98.
    R. R. Coifman and G. Weiss, Representations of compact groups and spherical harmonics, L’enseignement Math., 14 (1968), 123–173.MathSciNetGoogle Scholar
  99. 99.
    R. E. Collin, Foundations for Microwave Engineering, McGraw-Hill, N.Y., 1966.Google Scholar
  100. 100.
    E. U. Condon and H. Odabaşi, Atomic Structure, Cambridge U. Press, Cambridge, UK, 1980.Google Scholar
  101. 101.
    E. U. Condon and G. H. Shortley, Theory of Atomic Spectra, Cambridge U. Press, Cambridge, UK, 1935.Google Scholar
  102. 102.
    A. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Selecta Math. (N. S.) 5 (1999), 29–106.Google Scholar
  103. 103.
    A. Connes, Trace formula on the adèle class space and Weil positivity, in Curent developments in mathematics, 1997, Intl. Press, Boston, MA, 1999, pp. 5–64.Google Scholar
  104. 104.
    A. Connes, Noncommutative geometry and the Riemann zeta function, in Mathematics: Frontiers and Perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 35–54.Google Scholar
  105. 105.
    J. H. Conway, Monsters and moonshine, Math. Intelligencer, 2 (1980), 165–171.MathSciNetMATHGoogle Scholar
  106. 106.
    J. H. Conway and S.P. Norton, Monstrous moonshine, Bull. London Math. Soc., 11 (1979), 308–339.MathSciNetMATHGoogle Scholar
  107. 107.
    J. H. Conway, A. M. Odlyzko, and N. J. A. Sloane, Extreme self-dual lattices exist only in dimensions 1 to 8, 12, 14, 15, 23, and 24, Mathematika, 25, (1978), 36–43.MathSciNetMATHGoogle Scholar
  108. 108.
    J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Computation, 19 (1965), 297–301.MathSciNetMATHGoogle Scholar
  109. 109.
    E. T. Copson, Theory of Functions of a Complex Variable, Oxford U. Press, Oxford, UK, 1960.Google Scholar
  110. 110.
    COSRIMS, The Mathematical Sciences: A Collections of Essays, M.I.T. Press, Cambridge, MA., 1969.Google Scholar
  111. 111.
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, Wiley-Interscience, N.Y., 1961.Google Scholar
  112. 112.
    J.-M. Couveignes and B. Edixhoven, Eds., Computational Aspects of Modular Forms and Galois Representations, Princeton U. Press, Princeton, NJ, 2011.MATHGoogle Scholar
  113. 113.
    H. S. M. Coxeter, Non-Euclidean Geometry, U. of Toronto Press, Toronto, Canada, 1965.Google Scholar
  114. 114.
    H. S. M. Coxeter, Introduction to Geometry, Wiley, NY, 1961.MATHGoogle Scholar
  115. 115.
    H. Cramér, Mathematical Methods of Statistics, Princeton U. Press, Princeton, N.J., 1946.MATHGoogle Scholar
  116. 116.
    Yu. L. Daletskii, Continual integrals related to operator evolution equations, Russ. Math. Surveys, 17 (1962), 3–115.Google Scholar
  117. 117.
    I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41 (1988), 909–996.MathSciNetMATHGoogle Scholar
  118. 118.
    I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., SIAM, Philadelphia, PA, 1992.Google Scholar
  119. 119.
    I. Daubechies and J. C. Lagarias, Two-scale difference equations I. Global regularity of solutions, SIAM J. Math. Anal., 22 (1991), pp. 1388–1410.Google Scholar
  120. 120.
    H. Davenport, Multiplicative Number Theory, Springer-Verlag, NY, 1981.Google Scholar
  121. 121.
    H. Davenport and H. Heilbronn, On the zeros of certain Dirichlet series I, II, J. London Math. Soc., 11 (1936), 181–185, 307–312.MathSciNetGoogle Scholar
  122. 122.
    S. P. Davis and M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry, Academic Press, San Diego,CA, 2001.Google Scholar
  123. 123.
    N. G. de Bruijn, Algebraic theory of Penrose’s nonperiodic tilings of the plane, I, II, Nederl. Akad. Wetensch. Indag. Math. 43 (1981), 39–52, 53–66.MathSciNetMATHGoogle Scholar
  124. 124.
    E. M. De Jager, Applications of Distributions in Mathematical Physics, Amsterdam, Math. Centre Tract 10, 1964.Google Scholar
  125. 125.
    E. M. De Jager, Theory of distributions, in E. Roubine (Ed.), Mathematics Applied to Physics, Springer-Verlag, N.Y., 1970.Google Scholar
  126. 126.
    P. Deligne, Formes modulaires et représentations l-adiques, Sém. Bourbaki, 21 (1969), exp. 335.Google Scholar
  127. 127.
    P. Deligne, La conjecture de Weil, Inst. des Hautes Études Sci., Pub. Math., 53 (1974), 273–307.Google Scholar
  128. 128.
    B. N. Delone and S. S. Ryskov, Extremal problems in the theory of positive quadratic forms, Proc. Steklov Inst. Math., 112 (1971), 211–231.MathSciNetGoogle Scholar
  129. 129.
    J. Delsarte, Oeuvres, Éditions du Centre National de la Recherche Scientifique, Paris, 1971.Google Scholar
  130. 130.
    J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Inv. Math, 70 (1982/83), 219–288.Google Scholar
  131. 131.
    C. M. Dewitt, L’intégrale fonctionnelle de Feynman. Une introduction, Ann. Inst. H. Poincaré, XI (1969), 153–206.Google Scholar
  132. 132.
    P. Diaconis, Group Representations in Probability and Statistics, Inst. of Math. Statistics, Hayward, CA, 1988.MATHGoogle Scholar
  133. 133.
    F. Diamond and J. Shurman, A First Course in Modular Forms, Springer, NY, 2005.MATHGoogle Scholar
  134. 134.
    J. Dieudonné, Treatise on Analysis, Vols. I-VI, Academic, N.Y., 1969–1978.Google Scholar
  135. 135.
    P. A. M. Dirac, The physical interpretation of quantum dynamics, Proc. Royal Soc., London, Sect. A, 113 (1926–1927), 621–641.Google Scholar
  136. 136.
    G. Doetsch, Introduction to the Theory and Application of the Laplace Transform, Springer-Verlag, N.Y., 1974.Google Scholar
  137. 137.
    W. F. Donoghue, Distributions and Fourier Transforms, Academic, N.Y., 1969.MATHGoogle Scholar
  138. 138.
    J. S. Dowker, Quantum mechanics on group space and Huygen’s principle, Ann. of Physics, 62 (1971), 361–382.MathSciNetGoogle Scholar
  139. 139.
    J. S. Dowker, Quantum mechanics and field theory on multiply connected and on homogeneous spaces, J. Phys. A., 5 (1972), 936–943.MathSciNetGoogle Scholar
  140. 140.
    J. R. Driscoll and D. M. Healy, Jr., Computing Fourier transforms and convolutions on the 2-sphere, Adv. in Appl. Math., 15 (1994), 202–250).Google Scholar
  141. 141.
    R. M. Dudley, Lorentz-invariant Markov processes in relativistic phase space, Arkiv for Mat., 6 (1965), 241–268.MathSciNetGoogle Scholar
  142. 142.
    R. M. Dudley, Recession of some relativistic Markov processes, Rocky Mt. J. of Math., 4 (1974), 401–406.MathSciNetMATHGoogle Scholar
  143. 143.
    J. J. Duistermaat, J. A. C. Kolk, and V. S. Varadarajan, Spectra of compact locally symmetric manifolds of negative curvature, Inv. Math., 52 (1979), 27–93.MathSciNetMATHGoogle Scholar
  144. 144.
    W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math., 92 (1988), 73–90.MathSciNetMATHGoogle Scholar
  145. 145.
    N. Dunford and J. T. Schwartz,Linear Operators, Vols. I, II, III, Wiley-Interscience, N.Y., 1958, 1963, 1971.Google Scholar
  146. 146.
    P. Du Val, Elliptic Functions and Elliptic Curves, Cambridge U. Press, Cambridge, UK, 1973.MATHGoogle Scholar
  147. 147.
    H. Dym and H. P. McKean, Fourier Series and Integrals, Academic, N.Y., 1972.MATHGoogle Scholar
  148. 148.
    F. Dyson, Symmetry Groups in Nuclear and Particle Physics, Benjamin, NY, 1966.MATHGoogle Scholar
  149. 149.
    H. Edwards, Riemann’s Zeta Function, Academic, N.Y., 1974.MATHGoogle Scholar
  150. 150.
    M. Eichler, Introduction to the Theory of Algebraic Numbers and Functions, Academic, NY, 1966.MATHGoogle Scholar
  151. 151.
    M. Eichler, The basis problem for modular forms and the traces of the Hecke operators, Lecture Notes in Math., 320, Springer-Verlag, NY, 1973, 75–151.Google Scholar
  152. 152.
    M. Eichler, Modular correspondences and their representations, J. Indian Math. Soc., 20 (1955), 161–206.Google Scholar
  153. 153.
    M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z., 67 (1957), 267–298.MathSciNetMATHGoogle Scholar
  154. 154.
    M. Einsiedler, E. Lindenstrauss, P. Michel, and A. Venkatesh, The distribution of closed geodesics on the modular surface and Duke’s theorem, preprint.Google Scholar
  155. 155.
    J. Elstrodt, Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I, II, III. Math. Ann., 203 (1973), 295–330; Math. Z., 132 (1973), 99–134;Math. Ann., 208 (1974), 99–132.Google Scholar
  156. 156.
    J. Elstrodt, Die Selbergsche Spurformel für Kompakte Riemannsche Flächen, Jahresber. d. Dt. Math.-Verein, 83 (1981), 45–77.MathSciNetMATHGoogle Scholar
  157. 157.
    J. Elstrodt, F. Grunewald, and J. Mennicke, On the group \(PSL(\mathbb{Z}[i])\), J.V. Armitage (Ed.), Journées Arithmètiques 1980 Exeter, LMS Lecture Notes, Cambridge U. Press, Cambridge, UK, 1982.Google Scholar
  158. 158.
    J. Elstrodt, F. Grunewald, and J. Mennicke, Discontinuous groups on 3-dimensional hyperbolic space: Analytical theory and arithmetic applications, Russian Math. Surveys, 38 (1983), 137–168.MATHGoogle Scholar
  159. 159.
    J. Elstrodt, F. Grunewald, and J. Mennicke, PSL(2) over imaginary quadratic integers, Astérisque, 94 (1983), 43–60.MathSciNetGoogle Scholar
  160. 160.
    J. Elstrodt, F. Grunewald, and J. Mennicke, Groups Acting on Hyperbolic Space: Harmonic Analysis and Number Theory, Springer, Berlin, 1998.MATHGoogle Scholar
  161. 161.
    O. Emersleben, Die elektrostatische Gitterenergie endlicher Stücke heteropolarer Kristalle, Z. Physik Chem., 199 (1952), 170–190.Google Scholar
  162. 162.
    O. Emersleben, Über das Restglied der Gitterenergieentwicklung neutraler Ionengitter,Math. Nach., 9 (1953), 221–234.MathSciNetMATHGoogle Scholar
  163. 163.
    P. Epstein, Zur Theorie allgemeiner Zetafunktionen, I, II, Math. Ann., 56, 63 (1903, 1907), 614–644, 205–216.Google Scholar
  164. 164.
    A. Erdélyi et al., Higher Transcendental Functions, Vols. I, II, III, McGraw-Hill, N.Y., 1953–1955.Google Scholar
  165. 165.
    A. Erdélyi et al., Integral Transforms, Vols. I, II, McGraw-Hill, N.Y., 1954.Google Scholar
  166. 166.
    B. Ernst, The Magic Mirror of M.C. Escher, Ballantine, N.Y., 1976.Google Scholar
  167. 167.
    R. Evans, Spherical functions for finite upper half planes with characteristic 2, Finite Fields Applics, 3 (1995), 376–394.Google Scholar
  168. 168.
    R. Evans, Character sums as orthogonal eigenfunctions of adjacency operators for Cayley graphs, Contemp. Math., 168 (1994), A.M.S., Providence, RI, pp. 33–50.Google Scholar
  169. 169.
    P. P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale, Ann. d. Phys., 64 (1921), 253–287.MATHGoogle Scholar
  170. 170.
    H. Eyring, J. Walter, and G. Kimball, Quantum Chemistry, Wiley, NY, 1944.Google Scholar
  171. 171.
    L. D. Faddeev, Expansion in eigenfunctions of the Laplace operator on the fundamental domain of a discrete group on the Lobacevskii plane, Trans. Moscow Math. Soc., 17 (1967), 357–386.MathSciNetGoogle Scholar
  172. 172.
    K. Falconer, Fractal Geometry, Wiley, Chichester, 1990.MATHGoogle Scholar
  173. 173.
    J. Faraut, Dispersion d’une mesure de probabilité sur \(\mathit{SL}(2, \mathbb{R})\) biinvariante par \(\mathit{SO}(2, \mathbb{R})\) et théorème de la limite centrale. Preprint, 1975.Google Scholar
  174. 174.
    F. A. Farris, The edge of the universe-hyperbolic wallpaper, Math. Horizons, 8 (Sept., 2001), 16–23.Google Scholar
  175. 175.
    F. A. Farris, Forbidden symmetries, Notices of the Amer. Math. Soc., 59, No. 10 (Nov., 2012), 1386–1390.Google Scholar
  176. 176.
    J. D. Fay, Fourier coefficients of the resolvent for a Fuchsian group, J. fur die Reine und Angew. Math., 293 (1977), 143–203.MathSciNetGoogle Scholar
  177. 177.
    W. Feller, An Introduction to Probability Theory and its Applications, Vols. I, II. Wiley, N.Y., 1950, 1966.Google Scholar
  178. 178.
    R. Feynman, Quantum Mechanics and Path Integrals, McGraw-Hill, NY, 1965.MATHGoogle Scholar
  179. 179.
    K. L. Fields, Locally minimal Epstein zeta functions, Mathematika, 27 (1980), 17–24.MathSciNetMATHGoogle Scholar
  180. 180.
    H. Flanders, Differential Forms, Academic, NY, 1963.MATHGoogle Scholar
  181. 181.
    V. A. Fock, On the representation of an arbitrary function by an integral involving Legendre’s functions with a complex index, Comptes Rendus Acad. Sci. U.R.S.S., Doklady, N.S., 39 (1943), 253–256.Google Scholar
  182. 182.
    G. B. Folland, Fourier Analysis and its Applications, Wadsworth and Brooks/Cole, Pacific Grove, CA, 1992.MATHGoogle Scholar
  183. 183.
    L. Ford, Automorphic Functions, Chelsea, NY, 1951.Google Scholar
  184. 184.
    H. Frasch, Die Erzeugenden der Hauptkongruenzgruppen für Primzahlstufen, Math. Ann., 108 (1933), 229–252.MathSciNetGoogle Scholar
  185. 185.
    R. Fricke and F. Klein, Vorlesungen über die Theorie der automorphen Functionen, I, Teubner, Leipzig, 1897.Google Scholar
  186. 186.
    F. G. Friedlander, Introduction to the Theory of Distributions, Cambridge U. Press, Cambridge, UK, 1982.MATHGoogle Scholar
  187. 187.
    H. Funk, Beiträge zur Theorie der Kugelfunktionen, Math. Ann., 77(1916), 136–152.MathSciNetGoogle Scholar
  188. 188.
    H. Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc., 108 (1963), 377–428.MathSciNetMATHGoogle Scholar
  189. 189.
    H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Stat., 31 (1980), 459–469.MathSciNetGoogle Scholar
  190. 190.
    M. J. Gander and F. Kwok, Chladni figures and the Tacoma bridge: motivating PDE eigenvalue problems via vibrating plates, SIAM Review, 54 (2012), 573–596.MathSciNetMATHGoogle Scholar
  191. 191.
    R. Gangolli, Spectra of discrete uniform subgroups, in W. Boothby and G. Weiss (Eds.), Geometry and Analysis on Symmetric Spaces, Dekker, NY, 1972, 93–117.Google Scholar
  192. 192.
    R. Gangolli, Spherical functions on semisimple Lie groups, in W. Boothby and G. Weiss (Eds.), Geometry and Analysis on Symmetric Spaces, Dekker, NY, 1972, 41–92.Google Scholar
  193. 193.
    R. Gangolli, Isotropic infinitely divisible measures on symmetric spaces, Acta Math., 111 (1964), 213–246.MathSciNetMATHGoogle Scholar
  194. 194.
    R. Gangolli, On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups, Ann. of Math., 93 (1978), 150–165.MathSciNetGoogle Scholar
  195. 195.
    R. Gangolli and G. Warner, On Selberg’s trace formula, J. Math. Soc. Japan, 27 (1975), 328–343.MathSciNetMATHGoogle Scholar
  196. 196.
    R. Gangolli and G. Warner, Zeta functions of Selberg’s type for some noncompact quotients of symmetric spaces of rank one, Nagoya Math. J., 78 (1980), 1–44.MathSciNetGoogle Scholar
  197. 197.
    P. R. Garabedian, Partial Differential Equations, Wiley, N.Y., 1964.MATHGoogle Scholar
  198. 198.
    M. Gardner, Penrose Tiles to Trapdoor Ciphers, Cambridge U. Press, 1997.MATHGoogle Scholar
  199. 199.
    C. F. Gauss, Werke. Königlichen Gesellshaft der Wissenshaften, Göttingen, 1870–1927.Google Scholar
  200. 200.
    S. Gelbart, Automorphic Forms on Adele Groups, Princeton U. Press, Princeton, NJ, 1975.MATHGoogle Scholar
  201. 201.
    I. M. Gelfand, Spherical functions on symmetric spaces, Doklady Akad. Nauk. S.S.S.R., 70 (1950), 5–8.Google Scholar
  202. 202.
    I. M. Gelfand and S. V. Fomin, Geodesic flows on manifolds, A.M.S. Translations, 2, Vol. 1, (1955), 49–66.Google Scholar
  203. 203.
    I. M. Gelfand, M. I. Graev, and I. I. Piatetskii-Shapiro, Representation Theory and Automorphic Functions, Saunders, Philadelphia, PA, 1966.Google Scholar
  204. 204.
    I. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions, Vol. 5, Academic, NY, 1966.Google Scholar
  205. 205.
    I. M. Gelfand, R. A. Minlos, and Z. Ya. Shapiro, Representations of the Rotation and Lorentz Groups and Their Applications, MacMillan, NY, 1963.Google Scholar
  206. 206.
    I. M. Gelfand and G. E. Shilov, Generalized Functions, Vols. 1–3, Academic, N.Y., 1964.Google Scholar
  207. 207.
    I. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions, Vol. 5, Academic, NY, 1966.Google Scholar
  208. 208.
    M. E. Gertsenshtein and V. B. Vasil’ev, Waveguides with random inhomogeneities and Brownian motion in the Lobachevsky plane, Theory of Probability and its Applications, 4 (1959), 391–398.Google Scholar
  209. 209.
    R. K. Getoor, Infinitely divisible probabilities on the hyperbolic plane, Pacific J. Math., 11 (1961), 1287–1308.MathSciNetMATHGoogle Scholar
  210. 210.
    E. Ghys, Knots and dynamics, 2006 Intl. Cong. of Math. Proc., I, 247–277, 2006.Google Scholar
  211. 211.
    E. Ghys and J. Leys, Lorenz and Modular Flows: A Visual Introduction, Feature Column, AMS,
  212. 212.
    F. Gilbert, Inverse problems for the earth’s normal modes, in W.H. Reid (Ed.), Mathematical Problems in the Geophysical Sciences, Vol. I,Amer. Math. Soc., Providence, RI, 1971, 107–128.Google Scholar
  213. 213.
    R. Godement, Introduction aux travaux de A. Selberg,Sém. Bourbaki, exp. 144, Paris, 1957.Google Scholar
  214. 214.
    R. Godement, La formule des traces de Selberg considerée comme source de problèmes mathématiques, Sém. Bourbaki, exp. 244, Paris, 1962.Google Scholar
  215. 215.
    R. Godement, Introduction à la théorie de Langlands, Sém. Bourbaki, exp. 321 (1966/67), Benjamin, NY, 1968.Google Scholar
  216. 216.
    R. Godement, A theory of spherical functions, Trans. American Math. Soc., 73 (1952), 496–556.MathSciNetMATHGoogle Scholar
  217. 217.
    D. Goldfeld, Explicit formulae as trace formulae, in Number theory, trace formulas and discrete groups (Oslo, 1987), 281–288, Academic Press, Boston, MA, 1989.Google Scholar
  218. 218.
    D. Goldfeld, J. Hoffstein, and S. J. Patterson, Mean values of certain elliptic L-series, in N. Koblitz (Ed.), Number Theory Related to Fermat’s Last Theorem, Birkhäuser, Boston, 1982.Google Scholar
  219. 219.
    D. Goldfeld and J. Hundley, Automorphic Representations and L-Functions for the General Linear Group, Vol. I, Cambridge U. Press, Cambridge, UK, 2011.Google Scholar
  220. 220.
    D. Goldfeld and D. Husemoller, On \({L}^{2}\left(SL_{2}(\mathbb{Z})\right)\setminus H),\) preprint.Google Scholar
  221. 221.
    D. Goldfeld and P. Sarnak, Sums of Kloosterman sums, Inv. Math., 71 (1983), 243–250.MathSciNetMATHGoogle Scholar
  222. 222.
    D. Goldfeld and C. Viola, Mean values of L-functions associated to elliptic, Fermat and other curves at the centre of the critical strip, J. Number Theory, 11 (1979), 305–320.MathSciNetMATHGoogle Scholar
  223. 223.
    L. J. Goldstein, Analytic Number Theory, Prentice-Hall, Englewood Cliffs, NJ, 1971.MATHGoogle Scholar
  224. 224.
    L. J. Goldstein, Dedekind sums for a Fuchsian group I, II, Nagoya Math. J., 50 (1973), 21–47; 53 (1974), 171–187, 235–237.Google Scholar
  225. 225.
    L. J. Goldstein, On a conjecture of Hecke conceming elementary class number formulas, Manuscripta Math. 9 (1973), 245–305.MathSciNetMATHGoogle Scholar
  226. 226.
    L. J. Goldstein and M. Razar, A generalization of Dirichlet’s class number formula, Duke Math. J., 43 (1976), 349–358.MathSciNetMATHGoogle Scholar
  227. 227.
    C. S. Gordon, D. L. Webb, and S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds, Inv. Math., 110 (1992), 1–22.MathSciNetMATHGoogle Scholar
  228. 228.
    I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic, N.Y., 1965.Google Scholar
  229. 229.
    A. Granville and Z. Rudnick, Equidistribution in Number Theory, An Introduction, Proc. NATO Adv. Study Inst., Montréal, Canada, 2005, Springer, Dordrecht, The Netherlands, 2007.Google Scholar
  230. 230.
    I. Grattan-Guinness and J. R. Ravetz, Joseph Fourier, M.I.T. Press, Cambridge, MA, 1972.MATHGoogle Scholar
  231. 231.
    D. Greenspan, Discrete Models, Addison-Wesley, Reading, MA, 1973.MATHGoogle Scholar
  232. 232.
    P.R. Griffiths, Fourier transform infrared spectrometry, Science, 222 (1983), 297–302.Google Scholar
  233. 233.
    E. Grosswald, Topics from the Theory of Numbers, MacMillan, NY, 1966.MATHGoogle Scholar
  234. 234.
    F. A. Grünbaum, L. Longhi, and M. Perlstadt, Differential operators commuting with finite convolution integral operators: some nonabelian examples, SIAM J. Appl. Math., 42 (1982), 941–955.MathSciNetMATHGoogle Scholar
  235. 235.
    H. Guggenheimer, Differential Geometry, Dover, NY, 1977.MATHGoogle Scholar
  236. 236.
    R. C. Gunning, Lectures on Modular Forms, Princeton U. Press, Princeton, NJ, 1962.MATHGoogle Scholar
  237. 237.
    R. Gupta, Fields of division points of elliptic curves related to Coates-Wiles, Ph.D. Thesis, M.I.T., 1983.Google Scholar
  238. 238.
    D. Gurarie, Symmetries and Laplacians. Introduction to Harmonic Analysis, Group Representations and Applications, Elsevier, Amsterdam, The Netherlands, 1992.Google Scholar
  239. 239.
    M. Gutzwiller, Stochastic behavior in quantum scattering, Physica D, 7 (1983), 341–355.MathSciNetGoogle Scholar
  240. 240.
    M. Gutzwiller, The quantization of a classically ergodic system, Physica D, 5 (1982), 183–207.MathSciNetMATHGoogle Scholar
  241. 241.
    M. Gutzwiller, Classical quantization of a Hamiltonian with ergodic behavior, Physical Review Letters, 45 (1980), 150–153.Google Scholar
  242. 242.
    M. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer-Verlag, NY, 1990.MATHGoogle Scholar
  243. 243.
    R. K. Guy, Reviews in Number Theory, 1973–1983, Amer. Math. Soc., Providence, RI, 1984.Google Scholar
  244. 244.
    H. Haas, Numerische Berechnung der Eigenwerte der Differentialgleichung y 2 Δ u + λu = 0 für ein unendliches Gehiet im \({\mathbb{R}}^{2}\), Universität Heidelberg, Diplomarbeit, 1977.Google Scholar
  245. 245.
    Y. Hamahata, A note on modular forms on finite upper half planes, in Lecture Notes in Computer Science, 4547, Springer-Verlag, Berlin, 2007, pp. 18–24.Google Scholar
  246. 246.
    M. Hamermesh, Group Theory and its Applications to Physical Problems, Addison-Wesley, Reading, MA, 1962.Google Scholar
  247. 247.
    R. W. Hamming, Digital Filters, Prentice-Hall, Englewood Cliffs, N.J., 1977.Google Scholar
  248. 248.
    L. Hantsch and W. von Waldenfels, A random walk on the general linear group related to a problem of atomic physics, Lecture Notes in Math., Vol. 706, Springer-Verlag, NY, 1979, 131–143.Google Scholar
  249. 249.
    G. H. Hardy, Ramanujan, Chelsea, NY, 1940.Google Scholar
  250. 250.
    G. H. Hardy, Collected Papers, Vols. 1–7, Oxford U. Press, Oxford, UK, 1966–1979.Google Scholar
  251. 251.
    G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford U. Press, London, 1956.Google Scholar
  252. 252.
    Harish-Chandra, Automorphic Forms on Semi-Simple Lie Groups, Lecture Notes in Math., 62, Springer-Verlag, N.Y., 1968.Google Scholar
  253. 253.
    Harish-Chandra, Spherical functions on a semisimple Lie group I, II, Amer. J. Math., 80 (1953), 241–310, 553–613.Google Scholar
  254. 254.
    Harish-Chandra, Representations of semisimple Lie groups I, II, III, Trans. Amer. Math. Soc., 75 (1953), 185–243; 76 (1954), 26–65, 234–253.Google Scholar
  255. 255.
    D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy, Oxford U. Press, NY, 1978.Google Scholar
  256. 256.
    C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function, Royal Society Math. Tables, 6, Cambridge U. Press, Cambridge, UK, 1963.Google Scholar
  257. 257.
    D. R. Heath-Brown and S. J. Patterson, The distribution of Kummer sums at prime arguments, J. Reine Angew. Math., 310 (1979), 111–130.MathSciNetMATHGoogle Scholar
  258. 258.
    E. Hecke, Mathematische Werke, Vandenhoeck und Ruprecht, Göttingen, 1970.MATHGoogle Scholar
  259. 259.
    E. Hecke, Lectures on Dirichlet Series, Modular Functions and Quadratic Forms, given at the Institute for Advanced Study in 1938, B. Schoeneberg and W. Maak (Eds.). Vandenhoeck und Ruprecht, Göttingen, Germany, 1983.Google Scholar
  260. 260.
    E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer-Verlag, NY, 1981.MATHGoogle Scholar
  261. 261.
    D. Hejhal, The Selberg Trace Formula for \(\mathit{PSL}(2, \mathbb{R})\) , Vols. I, II, Lecture Notes in Math., 548, 1001, Springer-Verlag, N.Y., 1976, 1983.Google Scholar
  262. 262.
    D. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke Math. J., 43 (1976), 441–482.MathSciNetMATHGoogle Scholar
  263. 263.
    D. Hejhal, Some observations concerning eigenvalues of the Laplacian and Dirichlet L-Series, in H. Halberstam and C. Hooley (Eds.), Recent Progress in Analytic Number Theory, Academic, London, UK, 1981, pp. 95–110.Google Scholar
  264. 264.
    D. Hejhal, Some Dirichlet series whose poles are related to cusp forms, Pts. I, II, Technical Reports, 1981–14, 1982–13, Chalmers University of Tech., Sweden, 1981, 1982.Google Scholar
  265. 265.
    D. A. Hejhal, A Note on the Voronoi summation formula, Monatshefte für Math., 87 (1979), 1–14.MathSciNetMATHGoogle Scholar
  266. 266.
    D. A. Hejhal, On the calculation of Maass cusp forms, in Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology, J. Bolte and F. Steiner, Eds., Cambridge U. Press, Cambridge, UK, 2012, pp. 175–186.Google Scholar
  267. 267.
    D. A. Hejhal, Sur certaines séries de Dirichlet associées aux géodésiques fermées d’une surface de Riemann compacte, C.R. Acad. Sci. Paris, 294 (1982), 273–276.Google Scholar
  268. 268.
    D. A. Hejhal, Sur quelques propriétés asymptotiques des périodes hyperboliques et des invariants algebriques d’un sous-groupe discret de \(\mathit{PSL}(2, \mathbb{R})\), C.R. Acad. Sci. Paris, 294 (1982), 509–512.Google Scholar
  269. 269.
    D. A. Hejhal, Quelques examples de séries de Dirichlet dont les pôles ont un rapport étroit avec les valeurs propres de l’opérateur de Laplace-Beltrami hyperbolique, C.R. Acad. Sci. Paris, 294 (1982), 637–640.Google Scholar
  270. 270.
    D. A. Hejhal, Some Dirichlet series with coefficients related to periods of automorphic eigenforms [parts 1–2], Proc. Japan Acad. A., 58, 59 (1982, 1983) 413–417, 335–338.Google Scholar
  271. 271.
    D. A. Hejhal, A continuity method for spectral theory on Fuchsian groups, in R.A. Rankin (Ed.), Modular Forms, Horwood, Chichester (distrib. Wiley), 1984, 107–140.Google Scholar
  272. 272.
    D. A. Hejhal, A classical approach to a well known spectral correspondence on quaternion groups, Lecture Notes in Math., Vol. 1135, Springer-Verlag, Berlin, 1985, pp. 127–190.Google Scholar
  273. 273.
    D. A. Hejhal, Eigenvalues of the Laplacian for Hecke Triangle Groups, Memoirs of the Amer. Math. Soc., 469, AMS, Providence, RI, 1992.Google Scholar
  274. 274.
    D. A. Hejhal and B. Rackner, On the topography of Maass wave forms for \(\mathit{PSL}(2, \mathbb{Z})\), Experimental Math., 1 (1992), 275–305.MathSciNetMATHGoogle Scholar
  275. 275.
    D. A. Hejhal and A. Strömbergsson, Chaos and Maass waveforms of CM-type, Invited papers dedicated to Martin C. Gutzwiller, Part IV. Found. Phys. 31 (2001), no. 3, 519–533.Google Scholar
  276. 276.
    S. Helgason, Lie Groups and Symmetric Spaces, in C. M. DeWitt and J. A. Wheeler (Eds.), Battelle Recontres, Benjamin, NY, 1968, 1–71.Google Scholar
  277. 277.
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic, NY, 1962.MATHGoogle Scholar
  278. 278.
    S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic, NY, 1978.MATHGoogle Scholar
  279. 279.
    S. Helgason, The Radon Transform, Birkhä user, Boston, MA, 1980.MATHGoogle Scholar
  280. 280.
    S. Helgason, Topics in Harmonic Analysis on Homogeneous Spaces, Birkhäuser, Boston, MA, 1981.MATHGoogle Scholar
  281. 281.
    S. Helgason, Functions on symmetric spaces, Proc. Symp. Pure Math., 26, A.M.S., Providence, 1973, 101–146.Google Scholar
  282. 282.
    S. Helgason, Analysis on Lie Groups and Homogeneous Spaces, A.M.S. Regional Conference, 14, A.M.S., Providence, RI, 1971 (corrected, 1977).Google Scholar
  283. 283.
    S. Helgason, An analogue of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces, Math. Ann., 165 (1966), 297–308.MathSciNetMATHGoogle Scholar
  284. 284.
    S. Helgason, A duality for symmetric spaces with applications to group representations, III. Tangent space analysis, Adv. in Math., 36 (1980), 297–323.Google Scholar
  285. 285.
    J. Helszajn, Passive and Active Microwave Circuits, Wiley, NY, 1978.Google Scholar
  286. 286.
    J. W. Helton, Non-Euclidean functional analysis and electronics, Bull. Amer. Math. Soc., 7 (1982), 1–64.MathSciNetMATHGoogle Scholar
  287. 287.
    J. W. Helton, The distance of a function to H in the Poincaré metric. Electrical power transfer, J ournal of Functional Analysis, 38 (1980), 273–314.Google Scholar
  288. 288.
    J. W. Helton, A simple test to determine gain bandwidth limitations. Proc. I.E.E.E. Internatl. Conf. on Circuits and Systems, 1977.Google Scholar
  289. 289.
    P. Henrici, Applied and Computational Complex Analysis, Vols. I, II, Wiley, N.Y., 1974, 1977.Google Scholar
  290. 290.
    G. T. Herman (Ed.), Image Reconstruction from Projections, Springer-Verlag, NY, 1979.Google Scholar
  291. 291.
    R. Hermann, Lie Groups for Physicists, Benjamin, NY, 1966.MATHGoogle Scholar
  292. 292.
    R. Hermann, Fourier Analysis on Groups and Partial Wave Analysis, Benjamin, NY, 1969.MATHGoogle Scholar
  293. 293.
    Hewlett-Packard Co., Microwave Theory and Measurements, Prentice-Hall, Englewood Cliffs, NJ, 1963.Google Scholar
  294. 294.
    H. Heyer, An application of the method of moments to the central limit theorem, Lecture Notes in Math., Vol. 861, Springer-Verlag, NY, 1981, 65–73.Google Scholar
  295. 295.
    H. Hijikata, A. Pizer, and T. Shemanske, The basis problem for modular forms on Γ 0(N), Proc. Japan Acad., 56 (1980), 280–284.MathSciNetMATHGoogle Scholar
  296. 296.
    E. Hilb and M. Riesz, Neuere Untersuchungen über Trigonometrische Reihen, Enzycl. der Math. Wissen., Teubner, Leipzig, 1916.Google Scholar
  297. 297.
    D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination, Chelsea, N.Y., 1952.MATHGoogle Scholar
  298. 298.
    K. Højendahl, Studies in the properties of crystals III, On an elementary method of calculating Madelung’s constant, Danske Vid. Selske, Math.-fys. Medd., 16 (1982), 133–154.Google Scholar
  299. 299.
    R. Holowinsky and K. Soundararajan, Mass equidistribution of Hecke eigenfunctions, Ann. of Math. (2), 172 (2010), 1517–1528.Google Scholar
  300. 300.
    R. T. Hoobler and H. L. Resnikoff, Normal connections for automorphic embeddings. Preprint.Google Scholar
  301. 301.
    C. Hooley, On the distribution of the roots of polynomial congruences, Mathematika, 11 (1964), 39–49.MathSciNetMATHGoogle Scholar
  302. 302.
    S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bull. A.M.S., 43 (2006), 439–561.Google Scholar
  303. 303.
    L. Hörmander, On the division of distributions by polynomials, Arkiv. Matem., 3 (1958), 555–568.MATHGoogle Scholar
  304. 304.
    M. D. Horton and D. Newland, The Contest between the Kernels in the Selberg Trace Formula for the (q + 1)-regular Tree, in The Ubiquitous Heat Kernel, J. Jorgenson and L. Walling (Eds.), Contemporary Mathematics, Volume 398 (2006), pages 265–294.Google Scholar
  305. 305.
    J. Horvath, An introduction to distributions, Amer. Math. Monthly, 77 (1970), 227–240.MathSciNetMATHGoogle Scholar
  306. 306.
    H. Huber, Über eine neue Klasse automorphe Funktionen und eine Gitterpunkt-problem in der hyperbolischen Ebene, Comment. Math. Helvet., 30 (1965), 20–62.Google Scholar
  307. 307.
    H. Huber, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen, Math. Ann., 138 (1959), 1–26; II, Math. Ann., 142 (1961), 385–398; Nachtrag zu II, Math. Ann., 143 (1961), 463–464.Google Scholar
  308. 308.
    N. Hurt, Geometric Quantization in Action, D. Reidel, Amsterdam, 1983.MATHGoogle Scholar
  309. 309.
    N. Hurt, Propagators in quantum mechanics on multiply connected spaces, Lecture Notes in Physics, 50, Springer-Verlag, NY, 1976, 182–192.Google Scholar
  310. 310.
    N. Hurt and R. Hermann, Quantum Statistical Mechanics and Lie Group Harmonic Analysis, Part A, Math. Sci. Press, Brookline, MA 1982.Google Scholar
  311. 311.
    A. Hurwitz, Über algebraische Korrespondenzen und das allgemeine Korrespondenzprinzip, Math. Werke, I, Eidgenössischen Technischen Hochschule, Basel, 1932, 163–188.Google Scholar
  312. 312.
    A. Hurwitz and R. Courant, Funktionentheorie, Springer-Verlag, NY, 1964.MATHGoogle Scholar
  313. 313.
    J.-I. Igusa, Theta Functions, Springer-Verlag, NY, 1974.Google Scholar
  314. 314.
    Y. Ihara, Hecke polynomials as congruence ζ-functions in elliptic modular case, Ann. of Math., (2) 85 (1967), 267–295.Google Scholar
  315. 315.
    K. Imai (Ota), Generalization of Hecke’s correspondence to Siegel modular forms, Amer. J. Math., 102 (1980), 903–936.Google Scholar
  316. 316.
    L. Infeld and T. E. Hull, The Factorization Method, Rev. Mod. Phys. 23, (1951), 21–68.MathSciNetMATHGoogle Scholar
  317. 317.
    K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, NY, 1982.MATHGoogle Scholar
  318. 318.
    H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms, Revista Matemática Iberoamericana, 1995.Google Scholar
  319. 319.
    H. Iwaniec, Topics in Classical Automorphic Forms, Amer. Math. Soc., Providence, RI, 1997.MATHGoogle Scholar
  320. 320.
    H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc., Providence, RI, 2004.MATHGoogle Scholar
  321. 321.
    K. Iwasawa, Lectures on p-adic L-Functions, Princeton U. Press, Princeton, N.J., 1972.MATHGoogle Scholar
  322. 322.
    C. G. J. Jacobi, Gesammelte Werke, Vol. I, Chelsea, N.Y., 1969.Google Scholar
  323. 323.
    H. Jacquet and R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Math, 114, Springer-Verlag, NY, 1970.Google Scholar
  324. 324.
    H. Jacquet and J. Shalika, A non-vanishing theorem for zeta functions of GL(2), Inv.Math., 38 (1976), 1–16.Google Scholar
  325. 325.
    D. Jakobson, Quantum unique ergodicity for Eisenstein series on \(\mathit{PSL2}(\mathbb{Z})\setminus \mathit{PSL2}(\mathbb{R})\), Ann. Inst. Fourier (Grenoble), 44 (1994), 1477–1504.MathSciNetMATHGoogle Scholar
  326. 326.
    T. Janssen, Crystallographic Groups, North Holland-Elsevier, N.Y., 1973.Google Scholar
  327. 327.
    H. and B. Jeffreys, Methods of Mathematical Physics, Cambridge U. Press, Cambridge, UK, 1972.Google Scholar
  328. 328.
    G. M. Jenkins and D. G. Watts, Spectral Analysis and its Applications, Holden-Day, San Francisco, 1968.MATHGoogle Scholar
  329. 329.
    N. Jochnowitz, The index of the Hecke ring, T k, in the ring of integers of \(T_{k} \otimes \mathbb{Q}\), Duke Math. J., 46 (1979), 861–869.MathSciNetMATHGoogle Scholar
  330. 330.
    M. Kac, Selected Papers, M.I.T. Press, Cambridge, MA, 1979.MATHGoogle Scholar
  331. 331.
    M. Kac, The search for the meaning of independence, in J. Gani, (Ed.), The Making of Statisticians, Springer-Verlag, N.Y., 1982, 62–72.Google Scholar
  332. 332.
    M. Kac, Can you hear the shape of a drum?, Amer. Math. Monthly, 73 (1966), 1–23.MATHGoogle Scholar
  333. 333.
    M. Kac, Enigmas of Chance: An Autobiography, U. of California Press, Berkeley, CA, 1985.MATHGoogle Scholar
  334. 334.
    V. G. Kac, An elucidation of “infinite-dimensional algebras,…and the very strange formula.” \(E_{8}^{(1)}\) and the cube root of the modular invariant j, Advances in Math., 35 (1981), 264–273.Google Scholar
  335. 335.
    V. G. Kac, Infinite-dimensional algebras, Dedekind’s η-function, classical Möbius function and the very strange formula, Advances in Math., 30 (1978), 85–136.MATHGoogle Scholar
  336. 336.
    E. R. Kanasewich, Time Sequence Analysis in Geophysics, U. of Alberta Press, Alberta, Canada, 1975.Google Scholar
  337. 337.
    F. I. Karpelevich, V. N. Tutubalin, and M. G. Shur, Limit theorems for the compositions of distributions in the Lobachevsky plane and space, Theory of Probability and its Applications, 4 (1959), 399–402.Google Scholar
  338. 338.
    M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima, and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space. Ann. Math., 107 (1978), 1–39.MathSciNetMATHGoogle Scholar
  339. 339.
    A. Kasman, Glimpses of Soliton Theory: The Algebra and Geometry of Nonlinear PDEs, Amer. Math. Soc., Student Mathematical Library, Vol. 54, Providence, RI, 2010.Google Scholar
  340. 340.
    K. Katayama, Kronecker’s limit formulas and their applications, J. Fac. Sci. U. Tokyo, 13 (1966), 1–44.MathSciNetMATHGoogle Scholar
  341. 341.
    S. Kato, Dynamics of the Upper Atmosphere, Reidel, Amsterdam, Holland, 1980.Google Scholar
  342. 342.
    S. Katok, Fuchsian Groups, U. of Chicago Press, Chicago, IL, 1992.MATHGoogle Scholar
  343. 343.
    S. Katok and I. Ugarcovici, Symbolic dynamics for the modular surface and beyond, Bull. Amer. Math. Soc., 44, No. 1 (Jan., 2007), 87–132.Google Scholar
  344. 344.
    N. Katz, An overview of Deligne’s proof of the Riemann hypothesis for varieties over function fields (Hilbert’s Problem 8), Proc. Symp. in Pure Math., Vol. 28, American Math. Soc., Providence, RI, 1976, 286–288.Google Scholar
  345. 345.
    N. Katz, Sommes exponentielles, Astérisque, 79 (1980), available from Amer. Math. Soc. in U.S.Google Scholar
  346. 346.
    N. Katz, Estimates for Soto-Andrade sums, J. Reine Angew. Math., 438 (1993), 143–161.MathSciNetMATHGoogle Scholar
  347. 347.
    Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, N.Y., 1968.MATHGoogle Scholar
  348. 348.
    J. P. Keener, Principles of Applied Mathematics: Transformation and Approximation, Addison-Wesley, Redwood City, CA, 1988.MATHGoogle Scholar
  349. 349.
    J. B. Keller and G. C. Papanicolaou, Stochastic differential equations with applications to random harmonic oscillators and wave propagation in random media, SIAM J. Appl. Math., 21 (1971), 287–305.MathSciNetGoogle Scholar
  350. 350.
    L. J. P. Kilford, Modular Forms: A Classical and Computational Introduction, Imperial College Press, London, UK, 2008.Google Scholar
  351. 351.
    H. H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, Journal of the Amer. Math. Soc., 16 (2003), no. 1, 139–183, with appendix 1 by D. Ramakrishnan, and appendix 2 by Kim and P. Sarnak.Google Scholar
  352. 352.
    J. F. C. Kingman, Random walks with spherical symmetry, Acta Math., 109 (1963), 11–53.MathSciNetMATHGoogle Scholar
  353. 353.
    A. B. Kirillov, Elements of the Theory of Representations, Springer-Verlag, NY, 1976.MATHGoogle Scholar
  354. 354.
    K. Kirsten and F. L. Williams (Eds.), A Window into Zeta and Modular Physics, M.S.R.I. Pub., Vol. 57, Cambridge U. Press, Cambridge, UK, 2010.Google Scholar
  355. 355.
    F. Klein and R. Fricke, Vorlesungen über die Theorie der elliptischen Modulfunktionen, Vol. I, Johnson Reprint Corp., NY, 1966.Google Scholar
  356. 356.
    A. Knapp, Representation Theory of Real Semisimple Groups: an Overview Based on Examples, Princeton University Press, Princeton, NJ, 1986.Google Scholar
  357. 357.
    M. Knopp, Modular Functions in Analytic Number Theory, Markham, Chicago, IL, 1970.MATHGoogle Scholar
  358. 358.
    S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, NY, 1970.MATHGoogle Scholar
  359. 359.
    N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, NY, 1993.MATHGoogle Scholar
  360. 360.
    N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, NY, 1987.MATHGoogle Scholar
  361. 361.
    N. Koblitz, The Uneasy Relationship Between Mathematics and Cryptography, Notices Amer. Math. Soc., Vol. 54, No. 8, Sept., 2007, 972–979.Google Scholar
  362. 362.
    N. Koblitz and A. Menezes, The Brave New World of Bodacious Assumptions in Cryptography, Notices Amer. Math. Soc., Vol. 57, No. 3, March, 2010, 357–365.Google Scholar
  363. 363.
    D. R. Kohel and H. A. Verrill, Fundamental domains for Shimura curves,J. de Théorie des Nombres de Bordeaux, 15 (2003), 205–222.MathSciNetMATHGoogle Scholar
  364. 364.
    A. N. Kolmogorov, Une série de Fourier-Lebesgue divergente partout, C.R. Acad. Sci. Paris, Ser. A.-B, 183 (1926), 1327–1328.Google Scholar
  365. 365.
    A. N. Kolmogorov, Foundations of the Theory of Probability, Chelsea, N.Y., 1950.Google Scholar
  366. 366.
    A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Dover, N.Y., 1975.Google Scholar
  367. 367.
    M. J. Kontorovich and N. N. Lebedev, J. Exper. Theor. Phys. U.S.S.R. 8 (1938), 1192–1206.Google Scholar
  368. 368.
    M. J. Kontorovich and N. N. Lebedev, Acad. Sci. U.S.S.R., J. Physics, 1 (1939), 229–241.Google Scholar
  369. 369.
    M. J. Kontorovich and N. N. Lebedev, J. Exper. Theor. Phys. U.S.S.R., 9 (1939), 729–741.Google Scholar
  370. 370.
    A. Koranyi, A survey of harmonic functions on symmetric spaces, Proc. Symp. Pure Math., 35, Amer. Math. Soc., Providence, RI, 1979, 323–344.Google Scholar
  371. 371.
    J. Korevaar, Mathematical Methods, Academic, N.Y., 1968.MATHGoogle Scholar
  372. 372.
    T. W. Körner, Fourier Analysis, Cambridge U. Press, Cambridge, UK, 1988.MATHGoogle Scholar
  373. 373.
    A. Krieg, Hecke Algebras, Memoirs of Amer. Math. Soc., 435, Providence, 1990.Google Scholar
  374. 374.
    L. Kronecker, Werke, Leipzig, 1929.Google Scholar
  375. 375.
    T. Kubota, Elementary Theory of Eisenstein Series, Wiley, NY, 1973.MATHGoogle Scholar
  376. 376.
    T. Kubota, Some results concerning reciprocity law and real analytic automorphic functions, Proc. Symp. Pure Math., Vol. 20, Amer. Math. Soc., Providence, RI, 1970, 382–395.Google Scholar
  377. 377.
    S. Kudla, Relations between automorphic forms produced by theta functions, Lecture Notes in Math., 627, Springer-Verlag, NY, 1977, 277–285.Google Scholar
  378. 378.
    S. Kudla, Theta functions and Hilbert modular forms, Nagoya Math. J., 69 (1978), 97–106.MathSciNetMATHGoogle Scholar
  379. 379.
    S. Kudla and J. Millson, Harmonic differentials and closed geodesics on Riemann surfaces, Inv. Math., 54 (1979), 193–211.MathSciNetMATHGoogle Scholar
  380. 380.
    A. Kurihara, On some examples of equations defining Shimura curves and the Mumford uniformization,J. Fac. Sci. Univ. Tokyo, 25 (1979), 277–301.MathSciNetGoogle Scholar
  381. 381.
    N. V. Kuznetsov, Petersson’s conjecture for cusp forms of weight zero and Linnik’s conjecture. Sums of Kloosterman sums, Math. U.S.S.R. Sbornik, 39 (1981), 299–342.Google Scholar
  382. 382.
    G. Lachaud, Analyse spectrale des formes automorphes et séries d’Eisenstein, Inv. Math., 46 (1978), 39–79.MathSciNetMATHGoogle Scholar
  383. 383.
    J. Lagarias and A.M. Odlyzko, On computing Artin L-functions in the critical strip, Math. Comp., 33 (1979), 1081–1095.MathSciNetMATHGoogle Scholar
  384. 384.
    I. Lakatos, Proofs and Refutations, Cambridge U. Press, Cambridge, 1976.MATHGoogle Scholar
  385. 385.
    A. L. Lance, Introduction to Microwave Theory and Measurements, McGraw-Hill, NY, 1969.Google Scholar
  386. 386.
    S. Lang, Analysis I, Addison-Wesley, Reading, Mass., 1968. (the revised version is Undergraduate Analysis, Springer-Verlag, N.Y., 1983, 1997).Google Scholar
  387. 387.
    S. Lang, Real Analysis, Addison-Wesley, Reading, Mass., 1983.MATHGoogle Scholar
  388. 388.
    S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, Mass., 1968.Google Scholar
  389. 389.
    S. Lang, \(\mathit{SL}(2, \mathbb{R})\), Addison-Wesley, Reading, MA, 1975.Google Scholar
  390. 390.
    S. Lang, Elliptic Functions, Addison-Wesley, Reading, MA, 1973.MATHGoogle Scholar
  391. 391.
    S. Lang, Introduction to Modular Forms, Springer-Verlag, NY, 1976.MATHGoogle Scholar
  392. 392.
    S. Lang, Some history of the Shimura-Taniyama conjectures, Notices Amer. Math. Soc., 42 (1995), 1301–1307.MathSciNetMATHGoogle Scholar
  393. 393.
    R. P. Langlands, Eisenstein Series. Lecture Notes in Math., 544, Springer-Verlag, NY, 1976.Google Scholar
  394. 394.
    R. P. Langlands, Base Change for GL(2), Princeton U. Press, Princeton, NJ, 1980.MATHGoogle Scholar
  395. 395.
    E. M. Lapid, Introductory notes on the trace formula,
  396. 396.
    P. S. De Laplace, Théorie des attractions des sphéroides et de la figure des planètes, Mém. de l’ Acad. (1782), Paris, 1785.Google Scholar
  397. 397.
    K. Lauter, The advantages of elliptic curve cryptography for wireless security, IEEE Wireless Communications, Feb., 2004, 2–7Google Scholar
  398. 398.
    A. F. Lavrik, The principle of the theory of nonstandard functional equations for the Dirichlet functions, Proc. Steklov Inst. Math., 132 (1973), 77–85.MathSciNetGoogle Scholar
  399. 399.
    A. F. Lavrik, On functional equations of Dirichlet functions, Math. U.S.S.R. Izvestija, 31 (1967), 421–432.Google Scholar
  400. 400.
    P. Lax and R. Phillips, Scattering Theory for Automorphic Functions, Princeton University Press, Princeton, NJ, 1976.MATHGoogle Scholar
  401. 401.
    N. N. Lebedev, Special Functions and their Applications, Dover, N.Y., 1972.MATHGoogle Scholar
  402. 402.
    N. N. Lebedev, Sur une formule d’inversion, Dokl. Akad. Nauk. S.S.S.R., 52 (1946), 655–658.Google Scholar
  403. 403.
    P. Le Corbeiller,Crystals and the Future of Physics, The World of Mathematics, Vol. II, (J.R. Newman, Ed.). Simon and Schuster, NY, 1956, p. 876.Google Scholar
  404. 404.
    A. M. Legendre, Recherches sur l’attraction des sphéroides homogènes, Mém. math, phys. prés. à l’Acad. Sci. par. divers savantes, 10 (1785), 411–434.Google Scholar
  405. 405.
    A. M. Legendre, Recherches sur la figure des planètes, Mém. math. phys., Reg. de l’ Acad. Sci. (1784, 1787), 370–389.Google Scholar
  406. 406.
    D. H. Lehmer, Note on the distribution of Ramanujan’s tau function, Math. Comp., 24 (1970), 741–743.MathSciNetMATHGoogle Scholar
  407. 407.
    D. H. Lehmer, Ramanujan’s function τ(n), Duke Math. J., 10 (1943), 483–492.MathSciNetMATHGoogle Scholar
  408. 408.
    D. H. Lehmer, Some functions of Ramanujan, Math. Student, 27 (1959), 105–116.MathSciNetGoogle Scholar
  409. 409.
    D. H. Lehmer, Note on the distribution of Ramanujan’s tau function, Math. Comp., 24 (1970), 741–743.MathSciNetMATHGoogle Scholar
  410. 410.
    J. Lehner, Discontinuous groups and automorphic functions, Math. Survey, 8, Amer. Math. Soc., Providence, RI, 1964.Google Scholar
  411. 411.
    J. Lehner, The Picard theorems, Math. Monthly, 76 (1969), 1005–1012.MathSciNetMATHGoogle Scholar
  412. 412.
    E. Le Page, Théorèmes limites pour les produits de matrices aléatoires, Lecture Notes in Math., Vol. 928, Springer-Verlag, NY, 1982, 258–303.Google Scholar
  413. 413.
    G. Letac, Problèmes classiques de probabilité sur un couple de Gelfand,Lecture Notes in Math., Vol. 861, Springer-Verlag, NY, 1981, 93–120.Google Scholar
  414. 414.
    W. Leveque, Reviews in Number Theory, American Math. Soc., Providence, R.I., 1974.MATHGoogle Scholar
  415. 415.
    B. M. Levitan and I. S. Sargsjan, Introduction to Spectral Theory, American Math. Soc. Transl. of Math. Monographs, 39, Amer. Math. Soc., Providence, RI, 1975.Google Scholar
  416. 416.
    W.-C. W. Li, Hecke-Weil-Jacquet-Langlands theorem revisited, Lecture Notes in Math., 751. Springer-Verlag, N.Y., 206–220.Google Scholar
  417. 417.
    W.-C. W. Li, On a theorem of Hecke-Weil-Jacquet-Langlands, in H. Halberstam and C. Hooley (Eds.), Recent Progress in Analytic Number Theory, Academic, London, 1981, 119–152.Google Scholar
  418. 418.
    W.-C. W. Li, Newforms and functional equations, Math. Ann., 212 (1975), 285–315.MathSciNetMATHGoogle Scholar
  419. 419.
    W.-C. W. Li, Number Theory with Applications, World Scientific, Singapore, 1996.Google Scholar
  420. 420.
    S. Lichtenbaum, Values of zeta-functions, etale cohomology, and algebraic K-theory, Lecture Notes in Math., Vol. 342, Springer-Verlag, 1973, pp. 489–501.Google Scholar
  421. 421.
    M. J. Lighthill, Introduction to Fourier Analysis and Generalized Functions, Cambridge U. Press, Cambridge, 1978.Google Scholar
  422. 422.
    E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2), 163 (2006), 165–219.Google Scholar
  423. 423.
    G. Lion and M. Vergne, The Weil Representation, Maslov Index and Theta Series, Birkhäuser, Boston, MA, 1980.MATHGoogle Scholar
  424. 424.
    A. L. Loeb, A systematic survey of cubic crystal structures, J. Solid State Chem., 1 (1975), 237–267.Google Scholar
  425. 425.
    M. Loeve, Probability Theory, Van Nostrand, Princeton, N.J., 1963.MATHGoogle Scholar
  426. 426.
    S. Łojasiewicz, Sur le problème de la division, Stud. Math., 18 (1959), 87–136.MATHGoogle Scholar
  427. 427.
    J. S. Lomont, Applications of Finite Groups, Academic, N.Y., 1959.MATHGoogle Scholar
  428. 428.
    L. H. Loomis and S. Sternberg, Advanced Calculus, Addison-Wesley, Reading, MA, 1968.MATHGoogle Scholar
  429. 429.
    K. Lonngren and A. Scott (Eds.), Solitons in Action, Academic, NY, 1978.MATHGoogle Scholar
  430. 430.
    J.D. Louck and N. Metropolis, Hidden symmetry and the number-theoretic structure of the energy levels of a perturbed harmonic oscillator. Adv. in Appl. Math., 1 (1980), 182–220.MathSciNetMATHGoogle Scholar
  431. 431.
    A. K. Louis, Orthogonal function series expansions and the null space of the Radon transform. S.I.A.M. J. Math. Analysis, 15 (1984), 621–633.Google Scholar
  432. 432.
    A. K. Louis, Optimal sampling in nuclear magnetic resonance (NMR) tomography, J. Computer Assisted Tomography, 6 (1982), 334–340.Google Scholar
  433. 433.
    A. Lubotzky, Discrete Groups, Expanding Graphs, and Invariant Measures, Birkhäuser, Basel, 1994.MATHGoogle Scholar
  434. 434.
    A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica, 8(1988), 261–277.MathSciNetMATHGoogle Scholar
  435. 435.
    D. Ludwig, The Radon transform on Euclidean space,Comm. on Pure and Appl. Math., 29 (1966), 49–81.MathSciNetGoogle Scholar
  436. 436.
    W. Luo, Z. Rudnick, and P. Sarnak, On Selberg’s eigenvalue conjecture, Geom. Funct. Anal. 5 (1995), 387–401.MathSciNetMATHGoogle Scholar
  437. 437.
    H. Maass, Lectures on Modular Functions of One Complex Variable, Tata Institute of Fundamental Research, Bombay, India, 1964.MATHGoogle Scholar
  438. 438.
    H. Maass, Siegel’s Modular Forms and Dirichlet Series, Lecture Notes in Math. 216, Springer-Verlag, NY, 1971.Google Scholar
  439. 439.
    H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichung, Math. Ann., 121 (1949), 141–183.MathSciNetMATHGoogle Scholar
  440. 440.
    I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, UK, 1979.MATHGoogle Scholar
  441. 441.
    I. G. Macdonald, Affine root systems and Dedekind’s eta function, Inv. Math., 15 (1972), 91–143.MathSciNetMATHGoogle Scholar
  442. 442.
    G. Mackey, Unitary Group Representations in Physics, Probability, and Number Theory, Benjamin/Cummings, Reading, MA., 1978.Google Scholar
  443. 443.
    G. Mackey, Harmonic Analysis as the Exploitation of Symmetry-A Historical Survey, Rice U. Studies, 64, Houston, Texas, 1978.Google Scholar
  444. 444.
    G. Mackey, The Theory of Group Representations, U. of Chicago Press, Chicago, 1976.MATHGoogle Scholar
  445. 445.
    F. J. Macwilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North- Holland, Amsterdam, 1978.Google Scholar
  446. 446.
    W. Magnus, Noneuclidean Tesselations and Their Groups, Academic, N.Y., 1974.MATHGoogle Scholar
  447. 447.
    P. Magnusson, Transmission Lines and Wave Propagation, Allyn and Bacon, Boston, MA, 1965.Google Scholar
  448. 448.
    J. I. Manin, Cyclotomic fields and modular curves, Russ. Math. Surveys, 26 (1971), 7–78.MathSciNetMATHGoogle Scholar
  449. 449.
    J. I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk. S.S.S.R., 6 (1972), 19–64.Google Scholar
  450. 450.
    J. I. Manin, Correspondences, motives and monoidal transformations, Mat. Sb., 6 (1950), 439–470.Google Scholar
  451. 451.
    J. I. Manin, Modular forms and number theory, Proc. Internatl. Cong. Math., 1978, Helsinki, Vol. I, 177–186.Google Scholar
  452. 452.
    Y. I. Manin and A. A. Panchishkin, Introduction to Modern Number Theory, Encyclopaedia of Mathematical Sciences, Vol. 49, Springer, Berlin, 2005.Google Scholar
  453. 453.
    R. J. Marks, Handbook of Fourier Analysis and Its Applications, Oxford, NY, 2009.MATHGoogle Scholar
  454. 454.
    D. K. Maslen and D. N. Rockmore, The Cooley-Tukey FFT and Group Theory, Notices of the Amer. Math. Soc., 48, No. 10 (Nov., 2001), 1151–1160.Google Scholar
  455. 455.
    J. Masley and H. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math., 286 (1976), 248–256.MathSciNetGoogle Scholar
  456. 456.
    Math. Reviews Staff, Reviews in Number Theory, 1984–1996, Amer. Math. Soc., Providence, RI, 1997.Google Scholar
  457. 457.
    A. Matsumoto (Ed.), Microwave Filters and Circuits, Academic, NY, 1970.Google Scholar
  458. 458.
    K. Maurin, Analysis, Vols. I, II, Reidel, Dordrecht, Holland, 1980.Google Scholar
  459. 459.
    K. Maurin, General Eigenfunction Expansions and Unitary Representations of Topological Groups, Polish Scientific Publ., Warsaw, Poland, 1968.MATHGoogle Scholar
  460. 460.
    F. Mautner, Spherical functions and Hecke operators, Lie groups and their Representations, Proc. Summer School of the Bolya Janos Math. Soc., Budapest, 1971, Halsted, N.Y., 1975, 555–576.Google Scholar
  461. 461.
    H. P. McKean, Selberg’s trace formula as applied to a compact Riemann surface, Comm. Pure and Appl. Math., 25 (1972), 225–246; 27 (1974), 134.Google Scholar
  462. 462.
    F. G. Mehler, Über eine mit den Kugel und Cylinderfunktionen verwandte Funktion und ihre Anwendung in der Theorie der Elektricitätsvertheilung, Math. Ann., 18 (1881), 161–194.MathSciNetGoogle Scholar
  463. 463.
    J. Mennicke, Vorträge über Selbergs Spurformel, I, U. of Bielefeld, Germany.Google Scholar
  464. 464.
    J. Mennicke, Lectures on discontinuous groups on 3-dimensional hyperbolic space, Modular Form Conf., Durham, 1983.Google Scholar
  465. 465.
    A. Messiah, Quantum Mechanics, Vols. I, II, Wiley, N.Y., 1961, 1962.Google Scholar
  466. 466.
    C. Meyer, Die Berechnung der Klassenzahl abelscher Körper über quadratischen Zahlkörpern, Akademie-Verlag, Berlin, 1957.MATHGoogle Scholar
  467. 467.
    S. J. Miller and R. Takloo-Bighash, An Invitation to Modern Number Theory, Princeton U. Press, Princeton, NJ, 2006.MATHGoogle Scholar
  468. 468.
    J. Milnor, Hilbert’s problem 18, Proc. Symp. Pure Math., Vol. 28, American Math. Soc., Providence, RI, 1976, 491–506.Google Scholar
  469. 469.
    J. Milnor, Hyperbolic geometry: the first 150 years, Bull. American Math. Soc. N.S., 6 (1972), 9–24.Google Scholar
  470. 470.
    S. Minakshisundaram and A. Pleijel, Some properties of the eigenvalues of the Laplacian,J. Difffl. Geom., 1 (1967), 43–69.Google Scholar
  471. 471.
    H. Minkowski, Gesammelte Abhandlungen, Chelsea, NY, 1911 (reprinted 1967).Google Scholar
  472. 472.
    R. Moeckel, Geodesics on modular surfaces and continued fractions, Ergodic Theory and Dynamical Systems, 2 (1982), 69–83.MathSciNetMATHGoogle Scholar
  473. 473.
    S. A. Molchanov, Diffusion processes and Riemannian geometry, Russ. Math. Surveys, 30 (1975), 1–63.MATHGoogle Scholar
  474. 474.
    M. I. Monastyrsky and A. M. Perelomov, Coherent states and bounded homogeneous domains. Reports on Math. Phys., 6 (1974), 1–14.MathSciNetMATHGoogle Scholar
  475. 475.
    H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I, Classical Theory, Cambridge U. Press, Cambridge, UK, 2007.MATHGoogle Scholar
  476. 476.
    L. J. Mordell, On Mr. Ramanujan’s empirical expansions of modular functions, Proc. Cambridge Phil. Soc., 19 (1917), 117–124.Google Scholar
  477. 477.
    C. Moreno, Explicit formulas in the theory of automorphic forms, Lecture Notes in Math., 626, Springer-Verlag, NY, 1977, 73–216.Google Scholar
  478. 478.
    C. Moreno and F. Shahidi, The fourth moment of the Ramanujan tau function, Math. Ann., 266 (1983), 233–239.MathSciNetMATHGoogle Scholar
  479. 479.
    P. Morse and H. Feshbach, Methods of Theoretical Physics, Vols. I, II, McGraw-Hill, NY, 1953.Google Scholar
  480. 480.
    C. J. Mozzochi, The Fermat Diary, Amer. Math. Soc., Providence, RI, 2000.MATHGoogle Scholar
  481. 481.
    C. Müller, Spherical Harmonics, Lecture Notes in Math., 17, Springer-Verlag, NY, 1966.Google Scholar
  482. 482.
    D. Mumford, Curves and Their Jacobians, U. of Michigan Press, Ann Arbor, MI, 1976.Google Scholar
  483. 483.
    D. Mumford, Geometric Invariant Theory, Springer-Verlag, NY, 1965.MATHGoogle Scholar
  484. 484.
    D. Mumford, On the equations defining Abelian Varieties, I, II, III, Inv. Math., 1 (1966), 287–354; 3 (1967), 75–135, 215–244.Google Scholar
  485. 485.
    D. Mumford, Tata Lectures on Theta, I, II, Birkhäuser, Boston, 1982, 1984.Google Scholar
  486. 486.
    M. Ram Murty, Oscillations of Fourier coefficients of modular forms, Math. Ann., 262 (1983), 431–446.MathSciNetMATHGoogle Scholar
  487. 487.
    M. Ram Murty, On the Sato-Tate conjecture, in N. Koblitz (Ed.), Number Theory Related to Fermat’s Last Theorem, Birkhäuser, Boston, 1982, 195–205.Google Scholar
  488. 488.
    M. Ram Murty, An introduction to Selberg’s trace formula, J. Indian Math. Soc. (N.S.) 52 (1987), 91{126 (1988).Google Scholar
  489. 489.
    H. Nagoshi, Distribution of Hecke eigenvalues, Proc. Amer. Math. Soc., 134 (2006), no. 11, 3097–3106.MathSciNetMATHGoogle Scholar
  490. 490.
    M. A. Naimark, Linear Differential Operators, Vols. I, II, Ungar, NY, 1968.Google Scholar
  491. 491.
    W. Narkiewicz, Algebraic Numbers, Polish Sci. Pub., Warsaw, 1973.Google Scholar
  492. 492.
    Z. Nehari, Conformal Mapping, McGraw-Hill, NY, 1952.MATHGoogle Scholar
  493. 493.
    E. Nelson, Dynamical Theories of Brownian Motion, Princeton U. Press, Princeton, NY, 1967.MATHGoogle Scholar
  494. 494.
    H. Neuenhöffer, Über die analytische Fortsetzung von Poincaré reihen, Sitz. Heidelberg Akad. Wiss. (1973).Google Scholar
  495. 495.
    P. Nicholls, The Ergodic Theory of Discrete Groups, Cambridge U. Press, Cambridge, UK, 1989.MATHGoogle Scholar
  496. 496.
    M. E. Novodvorsky and I. I. Piatetskii-Shapiro, Rankin-Selberg method in the theory of automorphic forms, Proc. Symp. Pure Math., 30, Amer. Math. Soc., Providence, RI, 1976, 297–301.Google Scholar
  497. 497.
    A. Nussbaum, Applied Group Theory for Chemists, Physicists, and Engineers, Prentice-Hall, Englewood Cliffs, NJ, 1971.Google Scholar
  498. 498.
    F. Oberhettinger, Tables of Mellin Transforms, Springer-Verlag, N.Y., 1974.MATHGoogle Scholar
  499. 499.
    F. Oberhettinger, Tables of Bessel Transforms, Springer-Verlag, NY, 1972.MATHGoogle Scholar
  500. 500.
    F. Oberhettinger, Fourier Transforms of Distributions and Their Inverses: A Collection of Tables, Academic, NY, 1973.MATHGoogle Scholar
  501. 501.
    F. Oberhettinger, Fourier Expansions: A Collection of Formulas, Academic, NY, 1973.MATHGoogle Scholar
  502. 502.
    F. Oberhettinger and L. Badii, Tables of Laplace Transforms, Springer-Verlag, N.Y., 1973.MATHGoogle Scholar
  503. 503.
    A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. de Théorie des Nombres, Bordeaux, 2 (1990), 119–141.Google Scholar
  504. 504.
    A. M. Odlyzko and H. J. J. te Riele, Disproof of the Mertens conjecture, J. Reine Angew. Math., 357 (1985), 138–160.MathSciNetMATHGoogle Scholar
  505. 505.
    A. Ogg, Modular Forms and Dirichlet Series, Benjamin, NY, 1969.MATHGoogle Scholar
  506. 506.
    A. Ogg, Survey of modular functions of one variable, Lecture Notes in Math., Vol. 320, Springer-Verlag, NY, 1973, 1–35.Google Scholar
  507. 507.
    A. Ogg, A remark on the Sato-Tate conjecture, Inv. Math., 9 (1970), 198–200.MathSciNetMATHGoogle Scholar
  508. 508.
    F. W. J. Olver, Asymptotics and Special Functions, Academic, NY, 1974.Google Scholar
  509. 509.
    G. C. Papanicolaou, Wave propagation in a one-dimensional random medium, SIAM J. Appl. Math., 21 (1971), 13–18.MathSciNetMATHGoogle Scholar
  510. 510.
    S. J. Patterson, A lattice-point problem in hyperbolic space, Mathematika, 22 (1975), 81–88; 23 (1976), 227.Google Scholar
  511. 511.
    H. Petersson, Über eine Metrisierung der ganzen Modulformen, Jahresbericht d. Deutsche Math. Verein., 49 (1939), 49–75.Google Scholar
  512. 512.
    H. Petersson, Über die Entwicklungskoeffizienten der Automorphen Formen, Acta Math., 58 (1932), 170–215.MathSciNetGoogle Scholar
  513. 513.
    W. Pfetzer, Die Wirkung der Modulsubstitutionen auf mehrfache Thetareihen zu ungerader Variablenzahl, Arch. Math., 6 (1953), 448–454.MathSciNetGoogle Scholar
  514. 514.
    R. S. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of \(\mathit{PSL}(2, \mathbb{R})\), Invent. Math., 80, no. 2 (1985), 339–364.Google Scholar
  515. 515.
    I. I. Piatetskii-Shapiro, Euler subgroups, Lie groups and their representations, in I.M. Gelfand (Ed.), Summer School of the Bolyai Janos Math. Soc., Halsted, NY, 1975, 597–620.Google Scholar
  516. 516.
    I. I. Piatetskii-Shapiro, Cuspidal automorphic representations associated to parabolic subgroups and Ramanujan conjecture, in N. Koblitz (Ed.), Number Theory related to Fermat’s Last Theorem, Birkhäuser, Boston, MA, 1982.Google Scholar
  517. 517.
    H. Poincaré, Oeuvres, Vols. I-XI, Gauthier-Villars, Paris, 1951–53.Google Scholar
  518. 518.
    L. Pontryagin, Topological Groups, Moscow, USSR, 1957.MATHGoogle Scholar
  519. 519.
    C. Popescu, K. Rubin, and A. Silverberg,Arithmetic of L-Functions, IAS/Park City Math. Series, Vol. 18, AMS, Providence, RI, 2011.Google Scholar
  520. 520.
    D. L. Powers, Boundary Value Problems, 3rd Edition, Saunders (Harcourt Brace), Ft. Worth, TX, 1987.Google Scholar
  521. 521.
    D. M. Pozar, Microwave Engineering, Wiley, New York, NY, 1998.Google Scholar
  522. 522.
    E. Prestini, The Evolution of Applied Harmonic Analysis, Birkhäuser, Boston, MA, 2004.MATHGoogle Scholar
  523. 523.
    G. Purdy, R. and A. Terras, and H. Williams, Graphing L-Functions of Kronecker Symbols in the Real Part of the Critical Strip, Math. Student, 47 (1979), 101–131.Google Scholar
  524. 524.
    E. T. Quinto et al, Radon Transforms and Tomography, Cont. Math., 278, AMS, Providence, RI, 2001.Google Scholar
  525. 525.
    H. Rademacher, Topics in Analytic Number Theory, Springer-Verlag, NY, 1973.MATHGoogle Scholar
  526. 526.
    H. Rademacher, Eine Bemerkung über die Heckeschen Operatoren T(n), Abh. Math. Sem. U. Hamburg, 31 (1967), 149–151.MathSciNetMATHGoogle Scholar
  527. 527.
    H. Rademacher and E. Grosswald, Dedekind Sums, Carus Math. Monographs, 19, M.A.A., 1972.Google Scholar
  528. 528.
    J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Berichte Sächsische Akad. Wissen. zu Leipzig, 69 (1917), 262–277.Google Scholar
  529. 529.
    K. Ramachandra, Some applications of Kronecker’s limit formula, Ann. of Math, 80 (1964), 104–148.MathSciNetMATHGoogle Scholar
  530. 530.
    B. Randol, Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull. Amer. Math. Soc, 80 (1974), 996–1000.MathSciNetMATHGoogle Scholar
  531. 531.
    B. Randol, A remark on the multiplicity of the discrete spectrum of congruence subgroups, Proc. Amer. Math. Soc., 81 (1981), 339–340.MathSciNetMATHGoogle Scholar
  532. 532.
    R. A. Rankin, Modular Forms and Functions, Cambridge University Press, Cambridge, UK, 1977.MATHGoogle Scholar
  533. 533.
    R. A. Rankin, On horocyclic groups, Proc. London Math. Soc., (3)4 (1954), 219–234.Google Scholar
  534. 534.
    R. A. Rankin, Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions, I, II, III, Proc. Cambridge Phil. Soc., 35 (1939), 351–356, 357–372; 36 (1940), 150–151.Google Scholar
  535. 535.
    R. Rankin and J. M. Rushforth, The coefficients of certain integral modular forms, Proc. Cambridge Phil. Soc., 50 (1954), 305–308.MathSciNetMATHGoogle Scholar
  536. 536.
    H. Rauch and A. Lebowitz, Elliptic Functions, Theta Functions, and Riemann Surfaces, Williams and Wilkins, Baltimore, MD, 1973.MATHGoogle Scholar
  537. 537.
    J. W. S. Rayleigh, On the character of the complete radiation at a given temperature, Phil. Mag., 27 (1889) and Scientific Papers, Cambridge U. Press, Cambridge, 1902, and Dover, NY, 1964, Vol. 3, 273.Google Scholar
  538. 538.
    M. J. Razar, Values of Dirichlet series at integers in the critical strip, Lecture Notes in Math., 627, Springer-Verlag, NY, 1977, 1–10.Google Scholar
  539. 539.
    M. J. Razar, Modular forms for Γ 0(N) and Dirichlet series, Trans. Amer. Math., Soc. 231 (1977), 489–495.Google Scholar
  540. 540.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. I, Functional Analysis, Academic, NY, 1972.Google Scholar
  541. 541.
    D. St. P. Richards, The central limit theorem on spaces of positive definite matrices, J. Multivariate Anal. 29 (1989), no. 2, 326–332.Google Scholar
  542. 542.
    B. Riemann, Collected Works, Dover, N.Y., 1953.Google Scholar
  543. 543.
    L. Robin, Functions Sphériques de Legendre et Functions Sphéroidales, Vol. 3, Gauthier-Villars, Paris, 1959.Google Scholar
  544. 544.
    W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I, II, Math. Ann., 167 (1966), 292–337; 168 (1967), 261–324.Google Scholar
  545. 545.
    W. Roelcke, Über die Wellengleichung bei Grenzkreisgruppen erster Art., Sitzber. Akad. Heidelberg, Math.-naturwiss. Kl. 1953/55. Google Scholar
  546. 546.
    W. Roelcke, Über den Laplace-Operator auf Riemannschen Mannigfaltigkeiten mit diskontinuierlichen Gruppen. Math. Nachr., 21 (1960), 131–149.MathSciNetMATHGoogle Scholar
  547. 547.
    S. Rosenberg, The Laplacian on a Riemannian Manifold, Cambridge U. Press, Cambridge, UK, 1997.MATHGoogle Scholar
  548. 548.
    Z. Rudnick and P. Sarnak, The behavior of eigenstates of arithmetic hyperbolic manifolds, CMP, 161 (1994), 195–213.MathSciNetMATHGoogle Scholar
  549. 549.
    D. Ruelle, Zeta functions and statistical mechanics, Astérisque, 40 (1976), 167–176.MathSciNetGoogle Scholar
  550. 550.
    W. Rühl, The Lorentz Group and Harmonic Analysis, Benjamin, NY, 1970.MATHGoogle Scholar
  551. 551.
    W. Rühl, An elementary proof of the Plancherel theorem for the classical groups, Comm. Math. Phys., 11 (1969), 297–302.MathSciNetMATHGoogle Scholar
  552. 552.
    H. Saito, Automorphic Forms and Algebraic Extensions of Number Fields, Lectures in Math., 8, Kinokuniya Book Store, Tokyo, Japan, 1975.Google Scholar
  553. 553.
    Y. Sakamoto, Calculation of Madelung’s coefficient of NaCl, J. Sci. Hiroshima U., A, 16 (1953), 569.Google Scholar
  554. 554.
    P. Samuel, Algebraic Theory of Numbers, Houghton-Miffiin, Boston, 1970.MATHGoogle Scholar
  555. 555.
    P. Sarnak, Some Applications of Modular Forms, Cambridge U. Press, Cambridge, UK, 1990.MATHGoogle Scholar
  556. 556.
    P. Sarnak, Selberg’s eigenvalue conjecture: on the occasion of Robert Osserman’s retirement, Notices of the Amer. Math. Soc., Vol. 42, No. 11, Nov. 1995, 1272–1279.MathSciNetMATHGoogle Scholar
  557. 557.
    P. Sarnak, Kloosterman, quadratic forms and modular forms, Kloosterman Centennial Celebration, Nieuw. Arch. Wiskd., 5/1, nr.4 (Dec., 2000), 385–389.Google Scholar
  558. 558.
    P. Sarnak, The arithmetic and geometry of some hyperbolic three-manifolds, Acta Math., 151 (1983), 253–295.MathSciNetMATHGoogle Scholar
  559. 559.
    P. Sarnak, Linking numbers of modular knots,
  560. 560.
    P. Sarnak, Recent progress on the quantum unique ergodicity conjecture, Bull. Amer. Math. Soc., 48, No. 2 (April, 2011), 211–228.Google Scholar
  561. 561.
    P. Sarnak and A. Strömbergsson, Minima of Epstein’s Zeta Function and Heights of Flat Tori, Invent. Math., 165 (2006), 115–151.MathSciNetMATHGoogle Scholar
  562. 562.
    B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974.MATHGoogle Scholar
  563. 563.
    A. Schuster, On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena, Terr. Magn., 3 (1898), 13–41.Google Scholar
  564. 564.
    E. Schwandt, Non-degenerate wavefunctions with wave parameter ρ = 1, J. London Math. Soc., 3 (1971), 183–186.MathSciNetMATHGoogle Scholar
  565. 565.
    L. Schwartz, Mathematics for the Physical Sciences, Hermann, Paris, 1966.MATHGoogle Scholar
  566. 566.
    L. Schwartz, Théorie des Distributions, Hermann, Paris, 1959.MATHGoogle Scholar
  567. 567.
    L. Schwartz, Some applications of the theory of distributions, in T.L. Saaty (Ed.), Lectures on Modern Mathematics, Wiley, N. Y., 1963, 23–58.Google Scholar
  568. 568.
    R. L. E. Schwarzenberger, N-dimensional Crystallography, Pitman, San Francisco, 1980.MATHGoogle Scholar
  569. 569.
    A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47–87.MathSciNetMATHGoogle Scholar
  570. 570.
    A. Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Symp. Pure Math., 8, American Math. Soc., Providence, R.I., 1965, 1–15.Google Scholar
  571. 571.
    A. Selberg, Discontinuous groups and harmonic analysis, Proc. Internatl. Cong. of Math., Stockholm, 1962, 177–189.Google Scholar
  572. 572.
    A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modul-formen nahe verbunden ist, Arch. Math. Naturvid., 43 (1940), 47–50.MathSciNetGoogle Scholar
  573. 573.
    A. Selberg, Lectures on the Trace Formula, University of Göttingen, 1954.Google Scholar
  574. 574.
    A. Selberg, Collected Papers, vols. 1 and 2, Springer-Verlag, Berlin, 1989 and 1991.Google Scholar
  575. 575.
    M. Senechal, Quasicrystals and geometry, Cambridge U. Press, 1995.MATHGoogle Scholar
  576. 576.
    J.-P. Serre, A Course in Arithmetic, Springer-Verlag, NY, 1973.MATHGoogle Scholar
  577. 577.
    J.-P. Serre, Modular forms of weight one and Galois representations, in A. Fröhlich (Ed.), Algebraic Number Fields, Academic, NY, 1977, 193–268.Google Scholar
  578. 578.
    J.-P. Serre, Cohomologie des groupes discrets, Prospects in Math., Princeton U. Press, Princeton, N.J., 1971.Google Scholar
  579. 579.
    J.-P. Serre, Lectures on coefficients of modular forms, Modular Forms Conf., Durham, 1983.Google Scholar
  580. 580.
    J.-P. Serre, Abelian l-adic Representations and Elliptic Curves, Benjamin, NY, 1968.Google Scholar
  581. 581.
    J.-P. Serre and H.M. Stark, Modular forms of weight 1∕2, Lecture Notes in Math., 627, Springer-Verlag, NY, 1977, pp. 28–67.Google Scholar
  582. 582.
    I.R. Shafarevitch, Basic Algebraic Geometry, Springer-Verlag, NY, 1974.Google Scholar
  583. 583.
    A. Shaheen, Finite Planes and Finite Upper Half Planes: Their Geometry, a Trace Formula, Modular Forms and Eisenstein Series, Ph.D. Thesis, U.C.S.D., 2005.Google Scholar
  584. 584.
    A. Shaheen, A trace formula for finite upper half planes, J. Ramanujan Math. Soc., 21 (2006), no. 4, 343–363.MathSciNetMATHGoogle Scholar
  585. 585.
    T. Shaheen and A. Terras, Fourier expansions of complex-valued Eisenstein series on finite upper half planes, I nternational J. of Math. and Math. Sciences, Vol. 2006, Article ID 63918, pp. 1–17.Google Scholar
  586. 586.
    D. Shanks, Five number-theoretic algorithms, in Proc. 2nd Manitoba Conf. Numerical Math., Winnipeg, Manitoba, Canada, 1972, pp. 51–70.Google Scholar
  587. 587.
    C. E. Shannon, Communication in the presence of noise, Proc. I.R.E., 37 (1949), 10–21.Google Scholar
  588. 588.
    L. A. Shepp and J. B. Kruskal, Computerized tomography: the new medical x-ray technology, Amer. Math. Monthly, 85 (1978), 420–429.MathSciNetMATHGoogle Scholar
  589. 589.
    G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton U. Press, Princeton N.J., 1971.Google Scholar
  590. 590.
    G. Shimura, On modular forms of half integral weight, Ann. of Math., 97 (1973), 440–481.MathSciNetMATHGoogle Scholar
  591. 591.
    G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc., 31 (1975), 79–98.MathSciNetMATHGoogle Scholar
  592. 592.
    G. Shimura, Sur les intégrales attachées aux formes automorphes, J. Math. Soc. Japan, 11 (1979), 291–311.MathSciNetGoogle Scholar
  593. 593.
    T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. U. Tokyo, 23 (1976), 393–417.MathSciNetMATHGoogle Scholar
  594. 594.
    T. Shintani, A proof of the classical Kronecker limit formula, Tokyo J. Math., 3 (1980), 191–199.MathSciNetMATHGoogle Scholar
  595. 595.
    T. Shintani, On special values of zeta functions of totally real algebraic number fields, Proc. Internatl. Cong. of Math. Helsinki, 1978, 591–597.Google Scholar
  596. 596.
    C. L. Siegel, Topics in Complex Function Theory, Vols. I,II,III, Wiley-Interscience, NY, 1969–73.Google Scholar
  597. 597.
    C. L. Siegel, Lectures on Quadratic Forms, Tata Institute of Fundamental Research, Bombay, 1957.Google Scholar
  598. 598.
    C. L. Siegel, Analytische Zahlentheorie, Lecture Notes, U. of Göttingen, 1963–64.Google Scholar
  599. 599.
    C. L. Siegel, Lectures on Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1963.Google Scholar
  600. 600.
    C. L. Siegel, Gesammelte Abhandlungen, Vols. I-IV, Springer-Verlag, N.Y., 1966, 1979.Google Scholar
  601. 601.
    C. L. Siegel, On the history of the Frankfurt mathematics seminar, Math. Intelligencer, 1 (1979), 233–246.Google Scholar
  602. 602.
    G. J. Simmons, Cryptology: The mathematics of secure communication, Math. Intelligencer, 1 (1979), 233–246.MathSciNetMATHGoogle Scholar
  603. 603.
    I. M. Singer, Eigenvalues of the Laplacian and invariants of manifolds, Proc. Internatl. Cong. of Math., Vancouver, 1974, Vol. I, 187–200.Google Scholar
  604. 604.
    I. M. Singer and J. A. Thorpe, Lectures on Elementary Topology and Geometry, Scott, Foresman and Co., Glenview, Illinois, 1967.Google Scholar
  605. 605.
    D. Slepian and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty, I, II, Bell System Tech. J., 1 (1961), 43–84.MathSciNetGoogle Scholar
  606. 606.
    N. J. A. Sloane, Binary codes, lattices, and sphere-packings, Combinatorial Surveys, Proc. 6th British Comb. Conf., Academic, London, UK, 1977, 117–164.Google Scholar
  607. 607.
    N. J. A. Sloane, Error-correcting codes and invariant theory: New applications of a 19th century technique, Math. Monthly, 84 (1977), 82–107.MathSciNetMATHGoogle Scholar
  608. 608.
    R.A. Smith, The L 2-norm of Maass wave functions, Proc. Amer. Math. Soc., 82 (1981), 179–182.MathSciNetMATHGoogle Scholar
  609. 609.
    I. H. Sneddon, The Use of Integral Transforms, McGraw-Hill, NY, 1972.MATHGoogle Scholar
  610. 610.
    A. Sommerfeld, Partial Differential Equations in Physics, Academic, NY, 1949.MATHGoogle Scholar
  611. 611.
    J. Soto-Andrade, Geometrical Gel’fand models, tensor quotients, and Weil representations, Proc. Symp. Pure Math., 47, Amer. Math. Soc., Providence, RI, 1987, pp. 305–316.Google Scholar
  612. 612.
    K. Soundararajan, Quantum Unique Ergodicity for \(\mathit{SL}_{2}(\mathbb{Z})\setminus H\), Ann. of Math. (2), (to appear).Google Scholar
  613. 613.
    R. Spira, Calculation of Dirichlet L-functions, Math. Comp., 23 (1969), 489–497.MathSciNetMATHGoogle Scholar
  614. 614.
    M. Spivak, Calculus on Manifolds, Benjamin, NY, 1965.MATHGoogle Scholar
  615. 615.
    M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. II, Publish or Perish, Berkeley, CA, 1979.Google Scholar
  616. 616.
    F. D. Stacey, Physics of the Earth, Wiley, NY, 1977.Google Scholar
  617. 617.
    E. Stade, Fourier Analysis, Wiley, Hoboken, NJ, 2005.MATHGoogle Scholar
  618. 618.
    I. Stakgold, Boundary Value Problems of Mathematical Physics, Vols. I, II, MacMillan, NY, 1967.Google Scholar
  619. 619.
    I. Stakgold, Green’s Functions and Boundary Value Problems, Wiley NY, 1979.Google Scholar
  620. 620.
    J. A. Staniforth, Microwave Transmission, The English Universities Press, London, UK, 1972.Google Scholar
  621. 621.
    D. Stanton, An introduction to group representations and orthogonal polynomials, Orthogonal Polynomials: Theory and Practice, Edited by P. Nevai and M. E. H. Ismail, Kluwer, Dordrecht, 1990, 419–433.Google Scholar
  622. 622.
    R. J. Stanton and R. A. Tomas, Expansions for spherical functions on noncompact symmetric spaces, Acta Math., 140 (1978), 251–276.MathSciNetMATHGoogle Scholar
  623. 623.
    H. M. Stark, Galois theory, algebraic number theory, and zeta functions, in From Number Theory to Physics, M. Waldschmidt et al (Eds.), Springer-Verlag, Berlin, 1992, pp. 313–412. Google Scholar
  624. 624.
    H. M. Stark, The analytic theory of algebraic numbers, Bull. American Math. Soc., 81 (1975), 961–972.MATHGoogle Scholar
  625. 625.
    H. M. Stark, On the problem of unique factorization in complex quadratic fields, Proc. Symp. Pure Math., 7, American Math. Soc., Providence, RI, 1969, 41–56.Google Scholar
  626. 626.
    H. M. Stark, Values of L-functions at s = 1, I-IV, Advances in Math., 7 (1971), 301–343; 17 (1975), 60–92; 22 (1976), 64–84; 35 (1980), 197–235.Google Scholar
  627. 627.
    H. M. Stark, Class fields and modular forms of weight one, Lecture Notes in Math., Vol. 601, Springer-Verlag, NY, 1977, pp. 277–287.Google Scholar
  628. 628.
    H. M. Stark, M.I.T. and U.C.S.D. number theory course lecture notes (unpublished).Google Scholar
  629. 629.
    H. M. Stark, On the zeros of Epstein’s zeta function, Mathematika, 14 (1967), 47–55.MathSciNetMATHGoogle Scholar
  630. 630.
    H. M. Stark, The Coates-Wiles theorem revisited, in N. Koblitz (Ed.), Number Theory Related to Fermat’s Last Theorem, Birkhäuser, Boston, 1982, 349–362.Google Scholar
  631. 631.
    H. M. Stark, Fourier coefficients of Maass wave forms, in R.A. Rankin (Ed.), Modular Forms, Horwood, Chichester (distrib. Wiley), 1984, 263–269.Google Scholar
  632. 632.
    H. M. Stark, Galois theory, algebraic number theory and zeta functions, in From Number Theory to Physics, M. Waldschmidt et al (Eds.), Springer-Verlag, Berlin, 1992, pages 313–393.Google Scholar
  633. 633.
    H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, II, Adv. in Math., 154 (2000), 132–195.MathSciNetMATHGoogle Scholar
  634. 634.
    H. M. Stark and D. Zagier, A Property of L -Functions on the Real Line, J. Number Theory, 12 (1980), 49–52.MathSciNetMATHGoogle Scholar
  635. 635.
    E. M. Stein and R. Shakarchi, Fourier Analysis: An Introduction, Princeton U. Press, Princeton, NJ, 2003.Google Scholar
  636. 636.
    E. Stein and G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton U. Press, Princeton, NJ, 1971.MATHGoogle Scholar
  637. 637.
    W. Stein, Algebraic Number Theory, A Computational Approach (
  638. 638.
    W. Stein, Modular Forms, a Computational Approach, Amer. Math. Soc., Providence, RI, 2007.MATHGoogle Scholar
  639. 639.
    T. J. Stieitjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse, 8 (1894), 1–22.Google Scholar
  640. 640.
    G. Strang, Wavelets, American Scientist, 82 (April, 1994), 250–255.Google Scholar
  641. 641.
    G. Strang and G. I. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973.MATHGoogle Scholar
  642. 642.
    G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, Wellesley MA, 1996.MATHGoogle Scholar
  643. 643.
    R. L. Strichartz, A Guide to Distribution Theory and Fourier Transforms, CRC Press, Boca Raton, FL, 1994.MATHGoogle Scholar
  644. 644.
    F. Strömberg, Maass waveforms on (Γ 0(N), χ) (computational aspects), in Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology, J. Bolte and F. Steiner, Eds., Cambridge U. Press, Cambridge, UK, 2012, 187–228.Google Scholar
  645. 645.
    A. Strömbergsson, Some remarks on a spectral correspondence for Maass waveforms, Intl. Math. Res. Notices, 2001, No. 10, 505–517.Google Scholar
  646. 646.
    A. Strömbergsson, On the uniform equidistribution of long closed horocycles, Duke Math. J., 123, No. 3 (2004), 507–547.Google Scholar
  647. 647.
    N. Subia, Formule de Selberg et formes d’espaces hyperboliques compactes, Lecture Notes in Math., 497, Springer-Verlag, NY, 674–700.Google Scholar
  648. 648.
    M. Sugiura, Unitary Representations and Harmonic Analysis, Wiley, NY, 1975.MATHGoogle Scholar
  649. 649.
    T. Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math., 121 (1985), 169–186.MathSciNetMATHGoogle Scholar
  650. 650.
    P. Swinnerton-Dyer, Conjectures of Birch and Swinnerton-Dyer and of Tate, in T. A. Springer (Ed.), Proc. Conf. Local Fields, Springer-Verlag, NY, 1967, 132–157.Google Scholar
  651. 651.
    G. Szegö, Über einige asymptotische Entwicklungen der Legendreschen Funktionen, Proc. London Math. Soc, 36 (1932), 427–450.Google Scholar
  652. 652.
    K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan, 29, No. 1 (1977), 91–106.Google Scholar
  653. 653.
    K. Takeuchi, Commensurability classes of arithmetic triangle groups, J. Fac. Sci. Univ. Tokyo, Sect. 1A, Math., 24 (1977), 201–212.Google Scholar
  654. 654.
    L. A. Takhtadzhyan and A. I. Vinogradov, The Gauss-Hasse hypothesis on real quadratic fields with class number one, J. Reine Angew. Math., 335 (1982), 40–86.MathSciNetGoogle Scholar
  655. 655.
    J. D. Talman, Special Functions, Benjamin, N.Y., 1968.MATHGoogle Scholar
  656. 656.
    T. Tamagawa, On Selberg’s trace formula, J. Fac. Sci. U. Tokyo, Sec. I, 8 (1960), 363–386.Google Scholar
  657. 657.
    J. Tate, The work of David Mumford. Proc. Internatl. Cong. of Math., Vancouver, 1974, Vol. I, 11–15.Google Scholar
  658. 658.
    J. Tate, The general reciprocity law, Proc. Symp. Pure Math., 28, Amer. Math. Soc., Providence, RI, 1976, 311–322.Google Scholar
  659. 659.
    O. Taussky, On a theorem of Latimer and MacDuffee, Canadian Math. J., 1 (1949), 300–302.MathSciNetMATHGoogle Scholar
  660. 660.
    O. Taussky, On matrix classes corresponding to an ideal and its inverse, Illinois J. Math., 1 (1957), 108–113.MathSciNetMATHGoogle Scholar
  661. 661.
    R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math., 141 (3) (1995), 553–572.Google Scholar
  662. 662.
    A. Terras, Applications of special functions for the general linear group to number theory, Sém. Delange-Pisot-Poitou, 1976–1977, exp 23.Google Scholar
  663. 663.
    A. Terras, Integral formulas and integral tests for series of positive matrices, Pacific J. of Math., 89 (1980), 471–490.MathSciNetMATHGoogle Scholar
  664. 664.
    A. Terras, The minima of quadratic forms and the behavior of Epstein and Dedekind zeta functions, J. Number Theory, 12 (1980), 258–272.MathSciNetMATHGoogle Scholar
  665. 665.
    A. Terras, Bessel series expansions of the Epstein zeta function and the functional equation, Trans. American Math. Soc., 183 (1973), 477–486.MathSciNetMATHGoogle Scholar
  666. 666.
    A. Terras, Some formulas for the Riemann zeta function at odd integer argument resulting from Fourier expansions of the Epstein zeta function, Acta Arith., 29 (1976), 181–189.MathSciNetMATHGoogle Scholar
  667. 667.
    A. Terras, Harmonic Analysis on Symmetric Spaces and Applications, II, Springer-Verlag, NY, 1989.Google Scholar
  668. 668.
    A. Terras, Fourier Analysis on Finite Groups and Applications, Cambridge U. Press, Cambridge, UK, 1999.MATHGoogle Scholar
  669. 669.
    A. Terras, Comparison of Selberg’s trace formula with its discrete analogues, in (ed. Melvyn B. Nathanson), Proc. DIMACS Workshop on Unusual Applications of Number Theory, DIMACS Series in Discrete Math., Vol. 64, Amer. Math. Soc., 2004, pp. 213–225.Google Scholar
  670. 670.
    A. Terras, Finite Models for Arithmetical Quantum Chaos, IAS/Park City Math. Series, Vol. 12, A.M.S., Providence, RI, 2007, pages 333–375.Google Scholar
  671. 671.
    A. Terras, Zeta Functions of Graphs, Cambridge U. Press, Cambridge, UK, 2011.MATHGoogle Scholar
  672. 672.
    A. Terras and D. Wallace, Selberg’s trace formula on k-regular trees and applications, Internatl. Journal of Math. and Math. Sciences, Vol. 2003, No. 8 (Feb. 2003), 501–526.Google Scholar
  673. 673.
    R. Terras, On the convergence of the continued fraction for the incomplete gamma function and an algorithm for the Riemann zeta function, Preprint.Google Scholar
  674. 674.
    R. Terras, The determination of incomplete gamma functions through analytic integration, J. Comp. Physics, 31 (1979), 146–151.MathSciNetMATHGoogle Scholar
  675. 675.
    R. Terras, Generalized exponential operators in the continuation of the confluent hypergeometric functions, J. Comp. Physics, 44 (1981), 156–166.MathSciNetMATHGoogle Scholar
  676. 676.
    B. Thaller, Advanced Visual Quantum Mechanics, Springer, N.Y., 2005.Google Scholar
  677. 677.
    H. Then, Maass cusp forms for large eigenvalues, Mathematics of Computation 74 (2005), no. 249, 363–381.MathSciNetMATHGoogle Scholar
  678. 678.
    E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford U. Press, Oxford, UK, 1937.Google Scholar
  679. 679.
    E. C. Titchmarsh, Eigenfunction Expansions Associated with Second Order Differential Equations, Vols. I, II, Oxford U. Press, Oxford, UK, 1946.Google Scholar
  680. 680.
    E. C. Titchmarsh, The Theory of Riemann’s Zeta Function, Oxford University Press, Oxford, 1951.Google Scholar
  681. 681.
    P. D. Tiu and D. Wallace, Norm quadratic residue codes, IEEE Trans. Inform. Theory, 40 (3), (1994), 946–949.Google Scholar
  682. 682.
    P. de La Torre and L. J. Goldstein, On the transformation of logη(τ), Duke Math. J., 41 (1973), 291–297.Google Scholar
  683. 683.
    J. S. Trefil, Introduction to the Physics of Fluids and Solids, Pergamon, NY, 1975.MATHGoogle Scholar
  684. 684.
    F. Treves, Applications of distributions to PDE theory, Amer. Math. Monthly, 77 (1970), 241–248.MathSciNetMATHGoogle Scholar
  685. 685.
    K. Trimèche, Probabilitiés indéfiniment divisibles et théorème de la limite centrale pour une convolution généralisée sur la demi-droite, C.R. Acad. Sci. Paris, 286 (1978), 63–66.Google Scholar
  686. 686.
    J. Tunnell, Artin’s conjecture for representations of octahedral type, Bull. Amer. Math. Soc., 5 (1981), 173–175.MathSciNetMATHGoogle Scholar
  687. 687.
    J. Tunnell, On the local Langlands conjecture for GL(2), Inv. Math., 46 (1978), 179–200.MathSciNetMATHGoogle Scholar
  688. 688.
    V. N. Tutubalin, On limit theorems for the product of random matrices, Theory of Probability and its Applications, 15 (1965), 15–27.Google Scholar
  689. 689.
    G. A. Vanasse, Spectrometric Techniques, I, Academic, NY, 1977.Google Scholar
  690. 690.
    A. Van Der Poorten, A proof that Euler missed…Apery’s proof of the irrationality of ζ(3), Math. Intelligencer, 1 (1979), 195–203.MATHGoogle Scholar
  691. 691.
    B. L. Van Der Waerden, Group Theory and Quantum Mechanics, Springer-Verlag, NY, 1974.MATHGoogle Scholar
  692. 692.
    V. S. Varadarajan, Lie Groups, Lie Algebras and their Representations, Prentice-Hall, Englewood Cliffs, NJ, 1974.MATHGoogle Scholar
  693. 693.
    A. B. Venkov, Spectral theory of automorphic functions, the Selberg zeta function, and some problems of analytic number theory, Russian Math. Surveys, 34 (1979), 79–153.MathSciNetMATHGoogle Scholar
  694. 694.
    A. B. Venkov, On the trace formula for \(\mathit{SL}(3, \mathbb{Z})\), J. Sov. Math., 12 (1979), 384–424.MATHGoogle Scholar
  695. 695.
    A. B. Venkov, Spectral Theory of Automorphic Functions, Proc. Steklov Inst. Math., 153 (1981) Amer. Math. Soc. translation, 1982.Google Scholar
  696. 696.
    A. B. Venkov, V. L. Kalinin, and L. D. Faddeev, A nonarithmetic derivation of the Selberg trace formula, J. Soviet Math., 8 (1977), 171–199.MATHGoogle Scholar
  697. 697.
    M. Vergne, Representations of Lie groups and the orbit method, in B. Srinivasan and J. Sally (Eds.), Emmy Noether in Bryn Mawr, Springer-Verlag, NY, 1983, 59–101.Google Scholar
  698. 698.
    H. Verrill, Subgroups of \(\mathit{PSL}_{2}(\mathbb{R}),\) Chapter in The Magma Handbook, Vol. 2, J. Cannon, W. Bosma Eds., (2001), 233–254.Google Scholar
  699. 699.
    M.-F. Vignéras, Séries thèta des formes quadratiques indéfinies, Lecture Notes in Math., 627, Springer-Verlag, NY, 1977, 227–240.Google Scholar
  700. 700.
    M.-F. Vignéras, L’équation fonctionelle de la fonction zêta de Selberg de la groupe modulaire \(\mathit{PSL}(2, \mathbb{Z})\), Astérisque, 61 (1979), 235–249.MATHGoogle Scholar
  701. 701.
    M.-F. Vignéras, Variétés riemanniennes isospectrales et non isométriques, Ann. of Math., (2) 112 (1980), 21–32.Google Scholar
  702. 702.
    M.-F. Vignéras, Arithmétique des Algèbres de Quaternions, Lecture Notes in Math., 800, Springer-Verlag, NY, 1980.Google Scholar
  703. 703.
    M.-F. Vignéras, Quelques remarques sur la conjecture \(\lambda _{1} \geq \frac{1} {4}\), Sém Théorie des Nombres, Paris 1981–82, M.-J. Bertin (Ed.), Birkhäuser, Boston, 1983, 321–343.Google Scholar
  704. 704.
    N. J. Vilenkin, Special Functions and the Theory of Group Representations, Translations of Math. Monographs, 22, American Math. Soc., Providence, RI, 1968.Google Scholar
  705. 705.
    A. D. Virtser, Central limit theorem for semisimple Lie groups, Theory of Probability and its Applics., 15 (1970), 667–687.Google Scholar
  706. 706.
    V. S. Vladimirov, Equations of Mathematical Physics, Dekker, NY, 1971.Google Scholar
  707. 707.
    D. Vogan, Unitary Representations of Reductive Lie Groups, Annals of Mathematics Studies, Princeton University Press, Princeton, New Jersey, 1987.Google Scholar
  708. 708.
    J. Voight, Computing fundamental domains for Fuchsian groups, J. de Theorie des Nombres de Bordeaux, 21 (2009), 467–489.MathSciNetGoogle Scholar
  709. 709.
    S.M. Voronin, On analytic continuation of certain Dirichlet series, Proc. Steklov Inst. Math., 157 (1983), 25–30.MathSciNetMATHGoogle Scholar
  710. 710.
    A. Voros, Spectral zeta functions, in Zeta Functions in Geometry (Proceedings, Tokyo, Japan, August 1990), Advanced Studies in Pure Mathematics, 21 (1992) 327–358.MathSciNetGoogle Scholar
  711. 711.
    D. I. Wallace, Selberg’s trace formula and units in higher degree number fields, Ph.D. Thesis, U.C.S.D., 1982.Google Scholar
  712. 712.
    D. I. Wallace, Conjugacy classes of hyperbolic matrices in \(\mathit{SL}(n, \mathbb{Z})\) and ideal classes in an order, Trans. Amer. Math. Soc., 283 (1984), 177–184.MathSciNetMATHGoogle Scholar
  713. 713.
    D. I. Wallace and J. BelBruno,The Bell That Rings Light: A Primer in Quantum Mechanics And Chemical Bonding, World Scientific, Singapore, 2006Google Scholar
  714. 714.
    N. Wallach, Lecture Notes, 1981 NSF-CBMS Regional Conf. on Representations of Semi-Simple Lie Groups and Applics. to Analysis, Geometry and Number Theory (unpublished).Google Scholar
  715. 715.
    N. Wallach, Harmonic Analysis on Homogeneous Spaces, Dekker, NY, 1973.MATHGoogle Scholar
  716. 716.
    A. Wangerin, Theorie der Kugelfunktionen und der verwandten Funktionen, insbesondere der Laméschen und Besselschen (Theorie spezieller durch lineare Differential-gleichungen definierter Funktionen), Enzykl. der Mathematischen Wissenschaften, Vol. 2, Pt. 1, No. 2, Teubner, Leipzig, 1904–1916, 699–762.Google Scholar
  717. 717.
    G. Warner, Harmonic Analysis on Semi-Simple Lie Groups, Vols. I, II, Springer-Verlag, NY, 1972.Google Scholar
  718. 718.
    G. Warner, Selberg’s trace formula for non-uniform lattices: the \(\mathbb{R}\)-rank one case, Studies in Algebra and Number Theory, Advances in Math., Supp. Studies, 6 (1979), 1–142.Google Scholar
  719. 719.
    M. Watkins, Class number of imaginary quadratic fields, Math. of Computation, 73 (2003), 907–938.MathSciNetGoogle Scholar
  720. 720.
    G. Watson, Statistics on Spheres, Wiley, NY, 1983.MATHGoogle Scholar
  721. 721.
    G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge U. Press, London, UK, 1962.Google Scholar
  722. 722.
    A. Wawrzyńczyk, Group Representations and Special Functions, Polish Sci. Pub., Warsaw, Poland, and Reidel, Dordrecht, Holland, 1984.Google Scholar
  723. 723.
    N. Wax (Ed.), Selected Papers on Noise and Stochastic Processes, Dover, NY, 1954.MATHGoogle Scholar
  724. 724.
    H. Weber, Lehrbuch der Algebra, Vols. I-III, Chelsea, N.Y., 1961.Google Scholar
  725. 725.
    A. Weil, L’intégration dans les Groupes Topologiques, Hermann, Paris, France, 1965.Google Scholar
  726. 726.
    A. Weil, Basic Number Theory, Springer-Verlag, N.Y., 1974.MATHGoogle Scholar
  727. 727.
    A. Weil, Elliptic Functions According to Eisenstein and Kronecker, Springer-Verlag, NY, 1976.MATHGoogle Scholar
  728. 728.
    A. Weil, Dirichlet Series and Automorphic Forms, Lecture Notes in Math., 189, Springer-Verlag, NY, 1971.Google Scholar
  729. 729.
    A. Weil, Oeuvres Scientifiques, Collected Papers, 1926–1978, Vols. I-III, Springer-Verlag, NY, 1979.Google Scholar
  730. 730.
    H. Weyl, Gesammelte Abhandlungen, Springer-Verlag, NY, 1968.MATHGoogle Scholar
  731. 731.
    H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, NY, 1928.Google Scholar
  732. 732.
    H. Weyl, The Classical Groups, Their Invariants and Representations, Princeton U. Press, Princeton, NJ, 1946.MATHGoogle Scholar
  733. 733.
    H. E. White, Introduction to Atomic Spectra, McGraw-Hill, NY, 1934.Google Scholar
  734. 734.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge U. Press, Cambridge, UK, 1927.MATHGoogle Scholar
  735. 735.
    D. V. Widder, The Laplace Transform, Princeton U. Press, Princeton, NJ, 1941.Google Scholar
  736. 736.
    N. Wiener, The Fourier Integral and Certain of its Applications, Cambridge U. Press, London, UK, 1933.Google Scholar
  737. 737.
    N. Wiener, Selected Papers, M.I.T. Press, Cambridge, MA, 1964.Google Scholar
  738. 738.
    E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic, NY, 1959.MATHGoogle Scholar
  739. 739.
    E. P. Wigner, Random matrices in physics, S.I.A.M. Review, 9, No. 1 (1967), 1–23.Google Scholar
  740. 740.
    A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math., 141 (3) (1995), 443–551.Google Scholar
  741. 741.
    F. Williams, Topics in Quantum Mechanics, Birkhäuser, Boston, 2003.MATHGoogle Scholar
  742. 742.
    H. Williams and J. Broere, A computational technique for evaluating L(1, χ) and the class number of a real quadratic field, Math. Comp., 30 (1976), 887–893.MathSciNetMATHGoogle Scholar
  743. 743.
    K. Wohlfahrt, Über Operatoren Heckescher Art bei Modulformen reeller Dimension, Math. Nachr., 16 (1957), 233–256.MathSciNetMATHGoogle Scholar
  744. 744.
    S. A. Wolpert, The eigenvalue spectrum as moduli for compact Riemann surfaces, Bull. Amer. Math. Soc., 83 (1977), 1306–1308.MathSciNetMATHGoogle Scholar
  745. 745.
    S. A. Wolpert, The length spectra as moduli for compact Riemann surfaces, Ann. of Math., 109 (1979), 323–351.MathSciNetMATHGoogle Scholar
  746. 746.
    B. G. Wybourne, Classical Groups for Physicists, Wiley, NY, 1974.MATHGoogle Scholar
  747. 747.
    T. Yamazaki, On Siegel modular forms of degree 2, Amer. J. of Math., 98 (1973), 39–53.Google Scholar
  748. 748.
    K. Yosida, Functional Analysis, Springer-Verlag, NY, 1968.Google Scholar
  749. 749.
    D. Zagier, Elliptic Modular Forms and Their Applications, in The 1-2-3 of Modular Forms: Lectures at a Summer School in Nordfjordeid, Norway, Edited by J. H. Bruinier, G. van der Geer, G. Harder, D. Zagier, Springer, Berlin, 2008, pp. 1–103.Google Scholar
  750. 750.
    D. Zagier, Eisenstein series and the Riemann zeta function, Eisenstein series and the Selberg trace formula I, in Automorphic Forms, Representation Theory and Arithmetic, Bombay Colloquium, 1979, Springer-Verlag, NY, 1981, 275–302, 303–355.Google Scholar
  751. 751.
    D. Zagier, A Kronecker limit formula for real quadratic fields, Math. Ann., 231 (1975), 153–184.MathSciNetGoogle Scholar
  752. 752.
    D. Zagier, Modular forms whose coefficients involve zeta functions of quadratic fields, Lecture Notes in Math., 627, Springer-Verlag, NY, 1977, 105–169.Google Scholar
  753. 753.
    D. Zagier, Correction to “The Eichler-Selberg trace formula on \(\mathit{SL}(2, \mathbb{Z})\),” Lecture Notes in Math, 627, Springer-Verlag, N.Y., 1977, 171–173.Google Scholar
  754. 754.
    J. M. Ziman, Principles of the Theory of Solids, Cambridge U. Press, Cambridge, UK, 1972.Google Scholar
  755. 755.
    H. Zirin, The Solar Atmosphere, Blaisdell, Waltham, MA, 1966.Google Scholar
  756. 756.
    I. J. Zucker, Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures, J. Phys. A:Math. Gen., 8 (1975), 1734–1745.MathSciNetGoogle Scholar
  757. 757.
    A. Zygmund, Trigonometric Series, Warsaw, Poland, 1935.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Audrey Terras
    • 1
  1. 1.Department of MathematicsUniversity of California at San DiegoLa JollaUSA

Personalised recommendations