Skip to main content

Stearoyl-CoA Desaturase-1 Is a Biological Regulator of Energy Homeostasis

  • Chapter
  • First Online:
Stearoyl-CoA Desaturase Genes in Lipid Metabolism

Abstract

Stearoyl-CoA desaturase (SCD) catalyzes the ∆9-cis desaturation of a range of fatty acyl-CoA substrates. The preferred substrates are palmitoyl- and stearoyl-CoA, which are converted into palmitoleoyl- and oleoyl-CoA, respectively. In addition to being components of tissue lipids, monounsaturated fatty acids (MUFAs) also serve as mediators of signal transduction, cellular differentiation, food intake, apoptosis, and mutagenesis in some tumors. Given the multiple roles of MUFAs, variation in SCD activity in mammals would be expected to have an affect on a variety of key physiological variables, including differentiation, insulin sensitivity, metabolic rate, adiposity, atherosclerosis, cancer, and obesity. Oleate is the most abundant MUFA in dietary fat and is therefore readily available. Why then is SCD a highly regulated enzyme? Studies of mice that have a naturally occurring mutation in the SCD1 gene isoform as well as a mouse model with a targeted disruption of the SCD1 gene have revealed the role of de novo synthesized oleate and thus the physiological importance of SCD1 expression. SCD1 deficiency results in reduced tissue triglycerides, body adiposity, increased insulin sensitivity, and resistance to diet-induced obesity. The expression of several genes of lipid oxidation is up regulated, whereas lipid synthesis genes are down regulated. SCD1 therefore appears to be an important metabolic control point and inhibition of its expression could be of benefit for the treatment of obesity, diabetes, and other metabolic diseases. In this chapter we summarize the recent advances concerning the role of SCD in energy homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291:2613–2616

    Article  PubMed  CAS  Google Scholar 

  • Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM (2002) Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res 43:1899–1907

    Article  PubMed  CAS  Google Scholar 

  • Binczek E, Jenke B, Holz B, Gunter RH, Thevis M, Stoffel W (2007) Obesity resistance of stearoyl-CoA desaturase-deficient (SCD1-/-) mouse results from disruption of epidermal lipid barrier and adaptive thermoregulation. Biol Chem 388:405–418

    Article  PubMed  CAS  Google Scholar 

  • Bonet ML, Ribot J, Felipe F, Palou A (2003) Vitamin A and the regulation of fat reserves. Cell Mol Life Sci 7:1311–1321

    Article  Google Scholar 

  • Casimir DA, Ntambi JM (1996) cAMP activates the expression of stearoyl-CoA desaturase gene 1 during early preadipocyte differentiation. J Biol Chem 271:29847–29853

    Article  PubMed  CAS  Google Scholar 

  • Christianson JL, Nicoloro S, Straubhaar J, Czech MP (2008) Stearoyl-CoA desaturase 2 is required for peroxisome proliferator-activated receptor gamma expression and adipogenesis in cultured 3T3-L1 cells. J Biol Chem 283:2906–2916

    Article  PubMed  CAS  Google Scholar 

  • Cohen P, Miyazaki M, Socci ND, Hagge-Greenberg A, Liedtke W, Soukas AA, Sharma R, Hudgins LC, Ntambi JM, Friedman JM (2002) Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297:240–243

    Article  PubMed  CAS  Google Scholar 

  • Dobrzyn P, Dobrzyn A, Miyazaki M, Cohen P, Asilmaz E, Hardie DG, Friedman JM, Ntambi JM (2004) Stearoyl-CoA desaturase-1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc Natl Acad Sci USA 101:6409–6414

    Article  PubMed  CAS  Google Scholar 

  • Flowers MT, Paton CM, O’Byrne SM, Schiesser K, Dawson JA, Blaner WS, Kendziorski C, Ntambi JM (2011) Metabolic changes in skin caused by Scd1 deficiency: a focus on retinol metabolism. PLoS One 5(5):e19734

    Article  Google Scholar 

  • Hulver MW, Berggren JR, Carper MJ, Miyazaki M, Ntambi JM, Hoffman EP, Thyfault JP, Stevens R, Dohm GL, Houmard JA, Muoio DM (2005) Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab 2:251–261

    Article  PubMed  CAS  Google Scholar 

  • Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, Gonzalez FJ, Desvergne B, Wahli W (2000) Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem 275:28488–28493

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Dobrzyn A, Dobrzyn P, Rahman SM, Miyazaki M, Ntambi JM (2004) Lack of stearoyl-CoA desaturase 1 upregulates basal thermogenesis but causes hypothermia in a cold environment. J Lipid Res 45:1674–1682

    Article  PubMed  CAS  Google Scholar 

  • Loffler H, Aramaki JU, Effendy I (2002) The influence of body mass index on skin susceptibility to sodium lauryl sulphate. Skin Res Technol 8:19–22

    Article  PubMed  CAS  Google Scholar 

  • Lunzer MA, Manning JA, Ockner RK (1977) Inhibition of rat liver acetyl coenzyme A carboxylase by long chain acyl coenzyme A and fatty acid. Modulation by fatty acid-binding protein. J Biol Chem 252:5483–5487

    PubMed  CAS  Google Scholar 

  • MacDonald PN, Ong DE (1988) Acyl-CoA-independent esterification of retinol bound to cellular retinol-binding protein (type II) by microsomes from rat small intestine. J Biol Chem 263:12478–12482

    PubMed  CAS  Google Scholar 

  • Man WC, Miyazaki M, Chu K, Ntambi JM (2006) Co-localization of SCD1 and DGAT2: implying preference for endogenous monounsaturated fatty acids in triglyceride synthesis. J Lipid Res 47:1928–1939

    Article  PubMed  CAS  Google Scholar 

  • Marcelo CL, Duell EA, Rhodes LM, Dunham WR (1992) In vitro model of essential fatty acid deficiency. J Invest Dermatol 99:703–708

    Article  PubMed  CAS  Google Scholar 

  • McGarry JD, Leatherman GF, Foster DW (1978) Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J Biol Chem 253:4128–4136

    PubMed  CAS  Google Scholar 

  • Miller CW, Waters KM, Ntambi JM (1997) Regulation of hepatic stearoyl-CoA desaturase gene 1 by vitamin A. Biochem Biophys Res Commun 231:206–210

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki M, Kim YC, Gray-Keller MP, Attie AD, Ntambi JM (2000) The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J Biol Chem 275:30132–30138

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki M, Kim YC, Ntambi JM (2001a) A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis. J Lipid Res 42:1018–1024

    PubMed  CAS  Google Scholar 

  • Miyazaki M, Man WC, Ntambi JM (2001b) Targeted disruption of stearoyl-CoA desaturase1 gene in mice causes atrophy of sebaceous and meibomian glands and depletion of wax esters in the eyelid. J Nutr 131:2260–2268

    PubMed  CAS  Google Scholar 

  • Miyazaki M, Dobrzyn A, Sampath H, Lee SH, Man WC, Chu K, Peters JM, Gonzalez FJ, Ntambi JM (2004) Reduced adiposity and liver steatosis by stearoyl-CoA desaturase deficiency are independent of peroxisome proliferator-activated receptor-alpha. J Biol Chem 279:35017–35024

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki M, Dobrzyn A, Elias PM, Ntambi JM (2005) Stearoyl-CoA desaturase-2 gene expression is required for lipid synthesis during early skin and liver development. Proc Natl Acad Sci USA 102:12501–12506

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X, Ntambi JM (2007) Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab 6:484–496

    Article  PubMed  CAS  Google Scholar 

  • Napoli JL (1999) Interactions of retinoid binding proteins and enzymes in retinoid metabolism. Biochim Biophys Acta 1440:139–162

    Article  PubMed  CAS  Google Scholar 

  • Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS, Song Y, Cohen P, Friedman JM, Attie AD (2002) Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA 99:11482–11486

    Article  PubMed  CAS  Google Scholar 

  • Sampath H, Flowers MT, Liu X, Paton CM, Sullivan R, Chu K, Zhao M, Ntambi JM (2009) Skin-specific deletion of stearoyl-CoA desaturase-1 alters skin lipid composition and protects mice from high-fat diet-induced obesity. J Biol Chem 284:19961–19973

    Article  PubMed  CAS  Google Scholar 

  • Shih MYS, Kane MA, Zhou P, Yen CL, Streeper RS, Napoli JL, Farese RV (2009) Retinol esterification by DGAT is essential for retinoid homeostasis in murine skin. J Biol Chem 284:4292–4299

    Article  PubMed  CAS  Google Scholar 

  • Shimomura I, Bashmakov Y, Horton JD (1999a) Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem 274:30028–30032

    Article  PubMed  CAS  Google Scholar 

  • Shimomura I, Bashmakov Y, Ikemoto S, Horton JD, Brown MS, Goldstein JL (1999b) Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci USA 96:13656–13661

    Article  PubMed  CAS  Google Scholar 

  • Smith SJ, Cases S, Jensen DR, Sande E, Tow B, Sanan D, Raber J, Eckel RH, Farese RV Jr (2000) Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT. Nat Genet 25:87–90

    Article  PubMed  CAS  Google Scholar 

  • Sundberg JP, Boggess D, Sundberg BA, Eilertsen K, Parimoo S, Filippi M, Stenn K (2000) Asebia-2J (Scd1(ab2J)): a new allele and a model for scarring alopecia. Am J Pathol 156:2067–2075

    Article  PubMed  CAS  Google Scholar 

  • Villarroya F, Giralt M, Iglesias R (1999) Retinoids and adipose tissues: metabolism, cell differentiation and gene expression. Int J Obes Relat Metab Disord 1:1–6

    Article  Google Scholar 

  • Yan QW, Yang Q, Mody N, Graham TE, Hsu CH, Xu Z, Houstis NE, Kahn BB, Rosen ED (2007) The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56:2533–2540

    Article  PubMed  CAS  Google Scholar 

  • Yen CE, Stone SJ, Koliward S, Harris C, Farase RV (2008) DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49:2283–2301

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Eilertsen KJ, Ge L, Zhang L, Sundberg JP, Prouty SM, Stenn KS, Parimoo S (1999) Scd1 is expressed in sebaceous glands and is disrupted in the asebia mouse. Nat Genet 23:268–270

    Article  PubMed  CAS  Google Scholar 

  • Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J, Hamilton JA, Tang G, Dolnikowski GG, Vogel S et al (2007) Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med 6:695–702

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by NIH grant NIDDK-RO162388, AHA Grant-in Aid, Wisconsin Affiliate, USDA (Hatch) grant # 142-4306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Ntambi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ntambi, J.M. (2013). Stearoyl-CoA Desaturase-1 Is a Biological Regulator of Energy Homeostasis. In: Ntambi, Ph.D., J. (eds) Stearoyl-CoA Desaturase Genes in Lipid Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7969-7_3

Download citation

Publish with us

Policies and ethics