Skip to main content

Expression and Nutritional Regulation of Stearoyl-CoA Desaturase Genes in the Ruminant Mammary Gland: Relationship with Milk Fatty Acid Composition

  • Chapter
  • First Online:
Book cover Stearoyl-CoA Desaturase Genes in Lipid Metabolism

Abstract

In lactating ruminants, the stearoyl-CoA desaturase (SCD) gene expression and activity is implicated in mammary gland physiology and in milk technological and nutritional qualities. This chapter reviews the present knowledge on the effects of nutritional factors on SCD genes expression in the ruminant mammary gland, in relation with milk fatty acid (FA) composition. In addition, the effects of specific FA on SCD using in vitro mammary models and the known molecular mechanisms underlying these regulations are presented. In ruminants, two isoforms, SCD1 and SCD5, are produced from two different genes. In vivo nutrition studies in cows showed that diets inducing milk fat depression (MFD) decreased the mRNA abundance of mammary lipogenic genes which was not always observed for SCD1, leading to the hypothesis of a response of these genes as a two-step phenomenon, probably due to differences of response to transcription factors (SREBP1 or others). However, in cows, SCD1 mRNA decreased with marine oil supplements. In goats, SCD is regulated at a transcriptional and/or post-transcriptional level, depending on the lipid supplements. Post-ruminal infusion studies of specific FA in cows and goats confirmed that trans-10, cis-12-CLA, trans-10, trans-12- and trans-9, trans-11-CLA reduced milk fat Δ9-desaturation ratios and could be inhibitors of SCD activity despite that the two latter isomers were not associated with MFD. Finally, in vitro studies evidenced that (1) SREBP1 is a key transcription factor of mammary SCD1 gene expression, whereas LXR and PPARG roles need to be precised and (2) mammary SCD is inhibited by cis-9-18:1 and activated by trans-11-18:1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahnadi CE, Beswick N, Delbecchi L, Kennelly JJ, Lacasse P (2002) Addition of fish oil to diets for dairy cows. II. Effects on milk fat and gene expression of mammary lipogenic enzymes. J Dairy Res 69(4):521–531

    Article  PubMed  CAS  Google Scholar 

  • Alim MA, Fan YP, Wu XP, Xie Y, Zhang Y, Zhang SL, Sun DX, Zhang Y, Zhang Q, Liu L et al (2012) Genetic effects of stearoyl-coenzyme A desaturase (SCD) polymorphism on milk production traits in the Chinese dairy population. Mol Biol Rep 39(9):8733–8740

    Article  PubMed  CAS  Google Scholar 

  • Andrade PVD, Schmidely P (2006) Effect of duodenal infusion of trans10, cis12-CLA on milk performance and milk fatty acid profile in dairy goats fed high or low concentrate diet in combination with rolled canola seed. Reprod Nutr Dev 46(1):31–48

    Article  PubMed  CAS  Google Scholar 

  • Angulo J, Mahecha L, Nuernberg K, Nuernberg G, Dannenberger D, Olivera M, Boutinaud M, Leroux C, Albrecht E, Bernard L (2012) Effects of polyunsaturated fatty acids from plant oils and algae on milk fat yield and composition are associated with mammary lipogenic and SREBF1 gene expression. Animal 6:1–12

    Article  CAS  Google Scholar 

  • Annison EF, Bickerstaffe R, Linzell JL (1974) Glucose and fatty acid metabolism in cows producing milk of low fat content. J Agric Sci 82:87–95

    Article  Google Scholar 

  • Barber MC, Clegg RA, Travers MT, Vernon RG (1997) Lipid metabolism in the lactating mammary gland. Biochim Biophys Acta 1347(2–3):101–126

    PubMed  CAS  Google Scholar 

  • Bauman DE, Corl BA, Baumgard LH, Griinari JM (2001) Conjugated linoleic acid (CLA) and the dairy cow. In: Recent advances in animal nutrition, Garnsworthy PC, Wiseman J (eds), Nottingham university press, Nottingham, p 221–250

    Google Scholar 

  • Bauman DE, Griinari JM (2001) Regulation and nutritional manipulation of milk fat: low-fat milk syndrome. Livest Prod Sci 70(1–2):15–29

    Article  Google Scholar 

  • Bauman DE, Griinari JM (2003) Nutritional regulation of milk fat synthesis. Annu Rev Nutr 23:203–227

    Article  PubMed  CAS  Google Scholar 

  • Baumgard LH, Corl BA, Dwyer DA, Sæbø A, Bauman DE (2000) Identification of the conjugated linoleic acid isomer that inhibits milk fat synthesis. Am J Physiol Regul Integr Comp Physiol 278(1):R179–R184

    PubMed  CAS  Google Scholar 

  • Baumgard LH, Matitashvili E, Corl BA, Dwyer DA, Bauman DE (2002) Trans-10, cis-12 conjugated linoleic acid decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows. J Dairy Sci 85(9):2155–2163

    Article  PubMed  CAS  Google Scholar 

  • Bernard L, Bonnet M, Leroux C, Shingfield KJ, Chilliard Y (2009a) Effect of sunflower-seed oil and linseed oil on tissue lipid metabolism, gene expression, and milk fatty acid secretion in Alpine goats fed maize silage-based diets. J Dairy Sci 92(12):6083–6094

    Article  PubMed  CAS  Google Scholar 

  • Bernard L, Leroux C, Bonnet M, Rouel J, Martin P, Chilliard Y (2005a) Expression and nutritional regulation of lipogenic genes in mammary gland and adipose tissues of lactating goats. J Dairy Res 72(2):250–255

    Article  PubMed  CAS  Google Scholar 

  • Bernard L, Leroux C, Chilliard Y (2008) Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Adv Exp Med Biol 606:67–108

    Article  PubMed  CAS  Google Scholar 

  • Bernard L, Leroux C, Faulconnier Y, Durand D, Shingfield KJ, Chilliard Y (2009b) Effect of sunflower-seed oil or linseed oil on milk fatty acid secretion and lipogenic gene expression in goats fed hay-based diets. J Dairy Res 76(241–248)

    Google Scholar 

  • Bernard L, Leroux C, Hayes H, Gautier M, Chilliard Y, Martin P (2001) Characterization of the caprine stearoyl-CoA desaturase gene and its mRNA showing an unusually long 3′-UTR sequence arising from a single exon. Gene 281(1–2):53–61

    Article  PubMed  CAS  Google Scholar 

  • Bernard L, Montazer Torbati MB, Graulet B, Leroux C, Chilliard Y (2012) Long-chain fatty acids differentially alter lipogenesis in bovine and caprine mammary slices. J Dairy Res 80(89–95)

    Google Scholar 

  • Bernard L, Mouriot J, Rouel J, Glasser F, Capitan P, Pujos-Guillot E, Chardigny JM, Chilliard Y (2010) Effects of fish oil and starch added to a diet containing sunflower-seed oil on dairy goat performance, milk fatty acid composition and in vivo delta 9-desaturation of [C-13]vaccenic acid. Br J Nutr 104(3):346–354

    Article  PubMed  CAS  Google Scholar 

  • Bernard L, Rouel J, Leroux C, Ferlay A, Faulconnier Y, Legrand P, Chilliard Y (2005b) Mammary lipid metabolism and milk fatty acid secretion in alpine goats fed vegetable lipids. J Dairy Sci 88(4):1478–1489

    Article  PubMed  CAS  Google Scholar 

  • Bernard L, Shingfield KJ, Rouel J, Ferlay A, Chilliard Y (2009c) Effect of plant oils in the diet on performance and milk fatty acid composition in goats fed diets based on grass hay or maize silage. Br J Nutr 101(2):213–224

    Article  PubMed  CAS  Google Scholar 

  • Bichi E, Toral PG, Hervás G, Frutos P, Gómez-Cortés P, Juárez M, de la Fuente MA (2012) Inhibition of ∆9-desaturase activity with sterculic acid: effect on the endogenous synthesis of cis-9 18:1 and cis-9, trans-11 18:2 in dairy sheep. J Dairy Sci 95(9):5242–5252

    Article  PubMed  CAS  Google Scholar 

  • Bickerstaffe R, Annison EF (1970) The desaturase activity of goat and sow mammary tissue. Comp Biochem Physiol 35:653–665

    Article  CAS  Google Scholar 

  • Bionaz M, Loor JJ (2008) Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 9:366

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89(3):331–340

    Article  PubMed  CAS  Google Scholar 

  • Carta A, Casu S, Usai MG, Addis M, Fiori M, Fraghi A, Miari S, Mura L, Piredda G, Schibler L et al (2008) Investigating the genetic component of fatty acid content in sheep milk. Small Ruminant Res 79(1):22–28

    Article  Google Scholar 

  • Chilliard Y, Ferlay A, Mansbridge RM, Doreau M (2000) Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann Zootechnol 49(3):181–205

    Article  CAS  Google Scholar 

  • Chilliard Y, Glasser F, Ferlay A, Bernard L, Rouel J, Doreau M (2007) Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur J Lipid Sci Technol 109(8):828–855

    Article  CAS  Google Scholar 

  • Chilliard Y, Rouel J, Leroux C (2006) Goat’s alpha-s1 casein genotype influences its milk fatty acid composition and delta-9 desaturation ratios. Anim Feed Sci Technol 131(3–4):474–487

    Article  CAS  Google Scholar 

  • Christie WW (1981) The composition, structure and function of lipids in the tissues of ruminant animals. In: Christie WW (ed) Lipid metabolism in ruminant animals. Pergamon press, Oxford, pp 95–192

    Google Scholar 

  • Chung M, Ha S, Jeong S, Bok J, Cho K, Baik M, Choi Y (2000) Cloning and characterization of bovine stearoyl CoA desaturasel cDNA from adipose tissues. Biosci Biotechnol Biochem 64(7):1526–1530

    Article  PubMed  CAS  Google Scholar 

  • Clarke SD (2001) Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome. J Nutr 131(4):1129–1132

    PubMed  CAS  Google Scholar 

  • Conte G, Mele M, Chessa S, Castiglioni B, Serra A, Pagnacco G, Secchiari P (2010) Diacylglycerol acyltransferase 1, stearoyl-CoA desaturase 1, and sterol regulatory element binding protein 1 gene polymorphisms and milk fatty acid composition in Italian Brown cattle. J Dairy Sci 93(2):753–763

    Article  PubMed  CAS  Google Scholar 

  • Corl BA, Baumgard LH, Dwyer DA, Griinari JM, Phillips BS, Bauman DE (2001) The role of delta(9)-desaturase in the production of cis-9, trans-11 CLA. J Nutr Biochem 12(11):622–630

    Article  PubMed  CAS  Google Scholar 

  • Corl BA, Baumgard LH, Griinari JM, Delmonte P, Morehouse KM, Yuraweczc MP, Bauman DE (2002) Trans-7, cis-9 CLA is synthesized endogenously by delta(9)-desaturase in dairy cows. Lipids 37(7):681–688

    Article  PubMed  CAS  Google Scholar 

  • Delbecchi L, Ahnadi CE, Kennelly JJ, Lacasse P (2001) Milk fatty acid composition and mammary lipid metabolism in Holstein cows fed protected or unprotected canola seeds. J Dairy Sci 84(6):1375–1381

    Article  CAS  Google Scholar 

  • Dewhurst RJ, Shingfield KJ, Lee MRF, Scollan ND (2006) Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim Feed Sci Technol 131(3–4):168–206

    Article  CAS  Google Scholar 

  • Eberlé D, Hegarty B, Bossard P, Ferre P, Foufelle F (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86(11):839–848

    Article  PubMed  CAS  Google Scholar 

  • Enjalbert F, Nicot MC, Bayourthe C, Moncoulon R (1998) Duodenal infusions of palmitic, stearic or oleic acids differently affect mammary gland metabolism of fatty acids in lactating dairy cows. J Nutr 128(9):1525–1532

    PubMed  CAS  Google Scholar 

  • Gama MAS, Garnsworthy PC, Griinari JM, Leme PR, Rodrigues PHM, Souza LWO, Lanna DPD (2008) Diet-induced milk fat depression: association with changes in milk fatty acid composition and fluidity of milk fat. Livest Sci 115(2–3):319–331

    Article  Google Scholar 

  • Garcia-Fernandez M, Gutierrez-Gill B, Garcia-Gamez E, Arranz JJ (2009) Genetic variability of the stearoyl-CoA desaturase gene in sheep. Mol Cell Probes 23(2):107–111

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fernandez M, Gutierrez-Gil B, Garcia-Gamez E, Sanchez JP, Arranz JJ (2010) Detection of quantitative trait loci affecting the milk fatty acid profile on sheep chromosome 22: role of the stearoyl-CoA desaturase gene in Spanish Churra sheep. J Dairy Sci 93(1):348–357

    Article  PubMed  CAS  Google Scholar 

  • Gervais R, McFadden JW, Lengi AJ, Corl BA, Chouinard PY (2009) Effects of intravenous infusion of trans-10, cis-12 18: 2 on mammary lipid metabolism in lactating dairy cows. J Dairy Sci 92(10):5167–5177

    Article  PubMed  CAS  Google Scholar 

  • Glasser F, Ferlay A, Doreau M, Schmidely P, Sauvant D, Chilliard Y (2008) Long-chain fatty acid metabolism in dairy cows: a meta-analysis of milk fatty acid yield in relation to duodenal flows and de novo synthesis. J Dairy Sci 91(7):2771–2785

    Article  PubMed  CAS  Google Scholar 

  • Griinari JM, Corl BA, Lacy SH, Chouinard PY, Nurmela KVV, Bauman DE (2000) Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by delta(9)-desaturase. J Nutr 130(9):2285–2291

    PubMed  CAS  Google Scholar 

  • Griinari JM, Dwyer DA, McGuire MA, Bauman DE, Palmquist DL, Nurmela KV (1998) Trans-octadecenoic acids and milk fat depression in lactating dairy cows. J Dairy Sci 81(5):1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Hansen HO, Knudsen J (1987) Effect of exogenous long-chain fatty acids on lipid biosynthesis in dispersed ruminant mammary gland epithelial cells: esterification of long-chain exogenous fatty acids. J Dairy Sci 70(7):1344–1349

    Article  PubMed  CAS  Google Scholar 

  • Hansen HO, Tornehave D, Knudsen J (1986) Synthesis of milk specific fatty acids and proteins by dispersed goat mammary-gland epithelial cells. Biochem J 238(1):167–172

    PubMed  CAS  Google Scholar 

  • Harvatine KJ, Bauman DE (2006) SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J Nutr 136(10):2468–2474

    PubMed  CAS  Google Scholar 

  • Horton JD (2002) Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochem Soc Trans 30:1091–1095

    Article  PubMed  CAS  Google Scholar 

  • Invernizzi G, Thering BJ, McGuire MA, Savoini G, Loor JJ (2010) Sustained upregulation of stearoyl-CoA desaturase in bovine mammary tissue with contrasting changes in milk fat synthesis and lipogenic gene networks caused by lipid supplements. Funct Integr Genomics 10(4):561–575

    Article  PubMed  CAS  Google Scholar 

  • Jacobs AAA, van Baal J, Smits MA, Taweel HZH, Hendriks WH, van Vuuren AM, Dijkstra J (2011) Effects of feeding rapeseed oil, soybean oil, or linseed oil on stearoyl-CoA desaturase expression in the mammary gland of dairy cows. J Dairy Sci 94(2):874–887

    Article  PubMed  CAS  Google Scholar 

  • Jayan GC, Herbein JH (2000) “Healthier” dairy fat using trans-vaccenic acid. Nutr Food Sci 30(6):304–309

    Article  Google Scholar 

  • Jensen RG (2002) The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci 85(2):295–350

    Article  PubMed  CAS  Google Scholar 

  • Jin YC, Li ZH, Hong ZS, Xu CX, Han JA, Choi SH, Yin JL, Zhang QK, Lee KB, Kang SK et al (2012) Conjugated linoleic acid synthesis-related protein proteasome subunit α 5 (PSMA5) is increased by vaccenic acid treatment in goat mammary tissue. J Dairy Sci 95(8):4286–4297

    Article  PubMed  CAS  Google Scholar 

  • Kadegowda AKG, Bionaz M, Piperova LS, Erdman RA, Loor JJ (2009) Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. J Dairy Sci 92(9):4276–4289

    Article  PubMed  CAS  Google Scholar 

  • Kaestner KH, Ntambi JM, Kelly TJJ, Lane MD (1989) Differentiation-induced gene expression in 3T3-L1 preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 264(25):14755–14761

    PubMed  CAS  Google Scholar 

  • Karlengen IJ, Harstad OM, Taugbol O, Berget I, Aastveit AH, Vage DI (2012) The effect of excess cobalt on milk fatty acid profiles and transcriptional regulation of SCD, FASN, DGAT1 and DGAT2 in the mammary gland of lactating dairy cows. J Anim Physiol Anim Nutr 96(6):1065–1073

    Article  CAS  Google Scholar 

  • Kay JK, Mackle TR, Auldist MJ, Thomson NA, Bauman DE (2004) Endogenous synthesis of cis-9, trans-11 conjugated linoleic acid in dairy cows fed fresh pasture. J Dairy Sci 87(2):369–378

    Article  PubMed  CAS  Google Scholar 

  • Keating AF, Kennelly JJ, Zhao FQ (2006) Characterization and regulation of the bovine stearoyl-CoA desaturase gene promoter. Biochem Biophys Res Commun 344(1):233–240

    Article  PubMed  CAS  Google Scholar 

  • Keating AF, Stanton C, Murphy JJ, Smith TJ, Ross RP, Cairns MT (2005) Isolation and characterization of the bovine stearoyl-CoA desaturase promoter and analysis of polymorphisms in the promoter region in dairy cows. Mamm Genome 16(3):184–193

    Article  PubMed  CAS  Google Scholar 

  • Kgwatalala PM, Ibeagha-Awemu EM, Hayes JF, Zhao X (2007) Single nucleotide polymorphisms in the open reading frame of the stearoyl-CoA desaturase gene and resulting genetic variants in Canadian Holstein and Jersey cows. DNA Seq 18(5):357–362

    PubMed  CAS  Google Scholar 

  • Kgwatalala PM, Ibeagha-Awemu EM, Hayes JF, Zhao X (2009a) Stearoyl-CoA desaturase 1 3′UTR SNPs and their influence on milk fatty acid composition of Canadian Holstein cows. J Anim Breed Genet 126(5):394–403

    Article  PubMed  CAS  Google Scholar 

  • Kgwatalala PM, Ibeagha-Awemu EM, Mustafa AF, Zhao X (2009b) Stearoyl-CoA desaturase 1 genotype and stage of lactation influences milk fatty acid composition of Canadian Holstein cows. Anim Genet 40(5):609–615

    Article  PubMed  CAS  Google Scholar 

  • Kinsella JE (1970) Stearic acid metabolism by mammary cells. J Dairy Sci 53(12):1757–1765

    Article  PubMed  CAS  Google Scholar 

  • Legrand P, Catheline D, Fichot MC, Lemarchal P (1997) Inhibiting delta9-desaturase activity impairs triacylglycerol secretion in cultured chicken hepatocytes. J Nutr 127(2):249–256

    PubMed  CAS  Google Scholar 

  • Lengi AJ, Corl BA (2007) Identification and characterization of a novel bovine stearoyl-CoA desaturase isoform with homology to human SCD5. Lipids 42(6):499–508

    Article  PubMed  CAS  Google Scholar 

  • Lengi AJ, Corl BA (2008) Comparison of pig, sheep and chicken SCD5 homologs: evidence for an early gene duplication event. Comp Biochem Physiol B Biochem Mol Biol 150(4):440–446

    Article  PubMed  CAS  Google Scholar 

  • Lengi AJ, Corl BA (2010) Short communication: identification of the bovine sterol regulatory element binding protein-1c promoter and its activation by liver X receptor1. J Dairy Sci 93(12):5831–5836

    Article  PubMed  CAS  Google Scholar 

  • Lengi AJ, Corl BA (2012) Regulation of the bovine SCD5 promoter by EGR2 and SREBP1. Biochem Biophys Res Commun 421(2):375–379

    Article  PubMed  CAS  Google Scholar 

  • Lerch S, Shingfield KJ, Ferlay A, Vanhatalo A, Chilliard Y (2012) Rapeseed or linseed in grass-based diets: effects on conjugated linoleic and conjugated linolenic acid isomers in milk fat from Holstein cows over 2 consecutive lactations. J Dairy Sci 95(12):7269–7287

    Article  PubMed  CAS  Google Scholar 

  • Li XZ, Yan CG, Lee HG, Choi CW, Song MK (2012) Influence of dietary plant oils on mammary lipogenic enzymes and the conjugated linoleic acid content of plasma and milk fat of lactating goats. Anim Feed Sci Technol 174(1–2):26–35

    PubMed  CAS  Google Scholar 

  • Liu W, Degner SC, Romagnolo DF (2006) Trans-10, cis-12 conjugated linoleic acid inhibits prolactin-induced cytosolic NADP + −dependent isocitrate dehydrogenase expression in bovine mammary epithelial cells. J Nutr 136(11):2743–2747

    PubMed  CAS  Google Scholar 

  • Lock AL, Teles BM, Perfield JW, Bauman DE, Sinclair LA (2006) A conjugated linoleic acid supplement containing trans-10, cis-12 reduces milk fat synthesis in lactating sheep. J Dairy Sci 89(5):1525–1532

    Article  PubMed  CAS  Google Scholar 

  • Loor JJ, Doreau M, Chardigny JM, Ollier A, Sébédio JL, Chilliard Y (2005a) Effects of ruminal or duodenal supply of fish oil on milk fat secretion and profiles of trans-fatty acids and conjugated linoleic acid isomers in dairy cows fed maize silage. Anim Feed Sci Technol 119(3–4):227–246

    Article  CAS  Google Scholar 

  • Loor JJ, Ferlay A, Ollier A, Chilliard Y (2005b) Relationship among trans and conjugated fatty acids and bovine milk fat yield due to dietary concentrate and linseed oil. J Dairy Sci 88(2):726–740

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Corl BA (2012) Transcriptional regulation of lipid synthesis in bovine mammary epithelial cells by sterol regulatory element binding protein-1. J Dairy Sci 95(7):3743–3755

    Article  PubMed  CAS  Google Scholar 

  • Matitashvili E, Bauman DE (2000) Effect of different isomers of C18:1 and C18:2 fatty acids on lipogenesis in bovine mammary epithelial cells. J Anim Sci 78(Supplement 1):165

    Google Scholar 

  • Matitashvili E, Baumgard LH, Bauman DE (2001) The effect of trans-10, cis-12 conjugated linoleic acid (CLA) infusion on milk fat synthesis and expression of lipogenic enzymes in the mammary gland of lactating cows. J Anim Sci 79(Suppl 1):310

    Google Scholar 

  • Mauvoisin D, Mounier C (2011) Hormonal and nutritional regulation of SCD1 gene expression. Biochimie 93(1):78–86

    Article  PubMed  CAS  Google Scholar 

  • McDonald TM, Kinsella JE (1973) Stearyl-CoA desaturase of bovine mammary microsomes. Arch Biochem Biophys 156(1):223–231

    Article  PubMed  CAS  Google Scholar 

  • McFadden JW, Corl BA (2010) Activation of liver X receptor (LXR) enhances de novo fatty acid synthesis in bovine mammary epithelial cells. J Dairy Sci 93(10):4651–4658

    Article  PubMed  CAS  Google Scholar 

  • McFadden JW, Mullarky IK, Corl BA (2008) Inhibitory effect of unsaturated fatty acids on de novo fatty acid synthesis in bovine mammary epithelial cells. J Anim Sci 86(E-Suppl 2):566

    Google Scholar 

  • Mele M, Conte G, Castiglioni B, Chessa S, Macciotta NPP, Serra A, Buccioni A, Pagnacco G, Secchiari P (2007) Stearoyl-Coenzyme A desaturase gene polymorphism and milk fatty acid composition in Italian Holsteins. J Dairy Sci 90(9):4458–4465

    Article  PubMed  CAS  Google Scholar 

  • Mihara K (1990) Structure and regulation of rat liver microsomal stearoyl-CoA desaturase gene. J Biochem 108(6):1022–1029

    PubMed  CAS  Google Scholar 

  • Miyazaki M, Bruggink SM, Ntambi JM (2006) Identification of mouse palmitoyl-coenzyme A Delta 9-desaturase. J Lipid Res 47(4):700–704

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki M, Jacobson MJ, Man WC, Cohen P, Asilmaz E, Friedman JM, Ntambi JM (2003) Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. J Biol Chem 278(36):33904–33911

    Article  PubMed  CAS  Google Scholar 

  • Moioli B, Contarini G, Avalli A, Catillo G, Orru L, De Matteis G, Masoero G, Napolitano F (2007) Short communication: effect of stearoyl-coenzyme A desaturase polymorphism on fatty acid composition of milk. J Dairy Sci 90(7):3553–3558

    Article  PubMed  CAS  Google Scholar 

  • Mosley EE, McGuire MA (2007) Methodology for the in vivo measurement of the delta(9)-desaturation of myristic, palmitic, and stearic acids in lactating dairy cattle. Lipids 42:939–945

    Article  PubMed  CAS  Google Scholar 

  • Mosley EE, Shafii B, Moate PJ, McGuire MA (2006) Cis-9, trans-11 conjugated linoleic acid is synthesized directly from vaccenic acid in lactating dairy cattle. J Nutr 136(3):570–575

    PubMed  CAS  Google Scholar 

  • Murrieta CM, Hess BW, Scholljegerdes EJ, Engle TE, Hossner KL, Moss GE, Rule DC (2006) Evaluation of milk somatic cells as a source of mRNA for study of lipogenesis in the mammary gland of lactating beef cows supplemented with dietary high-linoleate safflower seeds. J Anim Sci 84(9):2399–2405

    PubMed  CAS  Google Scholar 

  • Nakamura MT, Nara TY (2004) Structure, function, and dietary regulation of delta 6, delta 5, and delta 9 desaturases. Annu Rev Nutr 24:345–376

    Article  PubMed  CAS  Google Scholar 

  • Ntambi JM (1999) Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 40(9):1549–1558

    PubMed  CAS  Google Scholar 

  • Ntambi JM, Buhrow SA, Kaestner KH, Christy RJ, Sibley E, Kelly TJJ, Lane MD (1988) Differentiation-induced gene expression in 3T3-L1 preadipocytes. Characterization of a differentially expressed gene encoding stearoyl- CoA desaturase. J Biol Chem 263(33):17291–17300

    PubMed  CAS  Google Scholar 

  • Ntambi JM, Miyazaki M, Dobrzyn A (2004) Regulation of stearoyl-CoA desaturase expression. Lipids 39(11):1061–1065

    Article  PubMed  CAS  Google Scholar 

  • Ollier S, Leroux C, de la Foye A, Bernard L, Rouel J, Chilliard Y (2009) Whole intact rapeseeds or sunflower oil in high-forage or high-concentrate diets affects milk yield, milk composition, and mammary gene expression profile in goats. J Dairy Sci 92(11):5544–5560

    Article  PubMed  CAS  Google Scholar 

  • Oshino N, Sato R (1972) The dietary control of the microsomal stearyl CoA desaturation enzyme system in rat liver. Arch Biochem Biophys 149(2):369–377

    Article  PubMed  CAS  Google Scholar 

  • Palmquist DL, Lock AL, Shingfield KJ, Bauman DE (2005) Biosynthesis of conjugated linoleic acid in ruminants and humans. In: Taylor SL (ed) Advances in food and nutrition research. Elsevier, San Diego, CA, pp 179–217

    Chapter  Google Scholar 

  • Parodi PW (1982) Positional distribution of fatty acids in the triglyceride classes of milk fat. J Dairy Res 49(1):73–80

    Article  PubMed  CAS  Google Scholar 

  • Parodi PW (2005) Dairy product consumption and the risk of breast cancer. J Am Coll Nutr 24(6 Suppl):556S–568S

    PubMed  CAS  Google Scholar 

  • Pauciullo A, Cosenza G, Steri R, Coletta A, La Battaglia A, Di Berardino D, Macciotta NPP, Ramunno L (2012) A single nucleotide polymorphism in the promoter region of river buffalo stearoyl CoA desaturase gene (SCD) is associated with milk yield. J Dairy Res 79(04):429–435

    Article  PubMed  CAS  Google Scholar 

  • Perfield JW, Delmonte P, Lock AL, Yurawecz MP, Bauman DE (2006) Trans-10, trans-12 conjugated linoleic acid does not affect milk fat yield but reduces delta9-desaturase index in dairy cows. J Dairy Sci 89(7):2559–2566

    Article  PubMed  CAS  Google Scholar 

  • Perfield JW, Lock AL, Griinari JM, Sæbø A, Delmonte P, Dwyer DA, Bauman DE (2007) Trans-9, cis-11 conjugated linoleic acid reduces milk fat synthesis in lactating dairy cows. J Dairy Sci 90(5):2211–2218

    Article  PubMed  CAS  Google Scholar 

  • Peterson DG, Matitashvili EA, Bauman DE (2003) Diet-induced milk fat depression in dairy cows results in increased trans-10, cis-12 CLA in milk fat and coordinate suppression of mRNA abundance for mammary enzymes involved in milk fat synthesis. J Nutr 133(10):3098–3102

    PubMed  CAS  Google Scholar 

  • Peterson DG, Matitashvili EA, Bauman DE (2004) The inhibitory effect of trans-10, cis-12 CLA on lipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation of the transcription factor SREBP-1. J Nutr 134(10):2523–2527

    PubMed  CAS  Google Scholar 

  • Piperova LS, Teter BB, Bruckental I, Sampugna J, Mills SE, Yurawecz MP, Fritsche J, Ku K, Erdman RA (2000) Mammary lipogenic enzyme activity, trans fatty acids and conjugated linoleic acids are altered in lactating dairy cows fed a milk fat-depressing diet. J Nutr 130(10):2568–2574

    PubMed  CAS  Google Scholar 

  • Qiu X, Eastridge ML, Firkins JL (2004) Effects of dry matter intake, addition of buffer, and source of fat on duodenal flow and concentration of conjugated linoleic acid and trans-11 C18:1 in milk. J Dairy Sci 87(12):4278–4286

    Article  PubMed  CAS  Google Scholar 

  • Rincon G, Islas-Trejo A, Castillo AR, Bauman DE, German BJ, Medrano JF (2012) Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle. J Dairy Res 79(01):66–75

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Ferlay A, Shingfield KJ, Chilliard Y (2006) Examination of the persistency of milk fatty acid composition responses to plant oils in cows given different basal diets, with particular emphasis on trans-C18:1 fatty acids and isomers of conjugated linoleic acid. Anim Sci 82:479–492

    Article  CAS  Google Scholar 

  • Sæbø A, Sæbø PC, Griinari JM, Shingfield KJ (2005) Effect of abomasal infusions of geometric isomers of 10, 12 conjugated synthesis linoleic acid on milk fat in dairy cows. Lipids 40(8):823–832

    Article  PubMed  Google Scholar 

  • Sampath H, Ntambi JM (2005) Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr 25:317–340

    Article  PubMed  CAS  Google Scholar 

  • Sessler AM, Kaur N, Palta JP, Ntambi JM (1996) Regulation of stearoyl-CoA desaturase 1 mRNA stability by polyunsaturated fatty acids in 3T3-L1 adipocytes. J Biol Chem 271(47):29854–29858

    Article  PubMed  CAS  Google Scholar 

  • Schennink A, Heck JML, Bovenhuis H, Visker MHPW, van Valenberg HJF, van Arendonk JAM (2008) Milk fatty acid unsaturation: genetic parameters and effects of stearoyl-CoA desaturase (SCD1) and acyl CoA: diacylglycerol acyltransferase 1 (DGAT1). J Dairy Sci 91(5):2135–2143

    Article  PubMed  CAS  Google Scholar 

  • Shingfield KJ, Ahvenjarvi S, Toivonen V, Vanhatalo A, Huhtanen P (2007) Transfer of absorbed cis-9, trans-11 conjugated linoleic acid into milk is biologically more efficient than endogenous synthesis from absorbed vaccenic acid in lactating cows. J Nutr 137(5):1154–1160

    PubMed  CAS  Google Scholar 

  • Shingfield KJ, Arola A, Ahvenjarvi S, Vanhatalo A, Toivonen V, Griinari JM, Huhtanen P (2008a) Ruminal infusions of cobalt-EDTA reduce mammary delta 9-desaturase index and alter milk fatty acid composition in lactating cows. J Nutr 138(4):710–717

    PubMed  CAS  Google Scholar 

  • Shingfield KJ, Chilliard Y, Toivonen V, Kairenius P, Givens DI (2008b) Trans fatty acids and bioactive lipids in ruminant milk. Adv Exp Med Biol 606:3–65

    Article  PubMed  CAS  Google Scholar 

  • Shingfield KJ, Bernard L, Leroux C, Chilliard Y (2010) Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal 4(7):1140–1166

    Article  PubMed  CAS  Google Scholar 

  • Shingfield KJ, Bonnet M, Scollan ND (2013) Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 7(Supplements1):132–162

    PubMed  Google Scholar 

  • Shingfield KJ, Rouel J, Chilliard Y (2009) Effect of calcium salts of a mixture of conjugated linoleic acids containing trans-10, cis-12 in the diet on milk fat synthesis in goats. Br J Nutr 101(7):1006–1019

    Article  PubMed  CAS  Google Scholar 

  • Shingfield KJ, Toivonen V, Vanhatalo A, Huhtanen P, Griinari JM (2006) Short communication: indigestible markers reduce the mammary delta9-desaturase index and alter the milk fatty acid composition in cows. J Dairy Sci 89(8):3006–3010

    Article  PubMed  CAS  Google Scholar 

  • Stoop WM, Bovenhuis H, Heck JML, van Arendonk JAM (2009) Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J Dairy Sci 92(4):1469–1478

    Article  PubMed  CAS  Google Scholar 

  • Taugbøl O, Karlengen IJ, Bolstad T, Aastveit AH, Harstad OM (2008) Cobalt supplied per os reduces the mammary {delta}9-desaturase index of bovine milk. J Anim Sci 86(11):3062–3068

    Article  PubMed  CAS  Google Scholar 

  • Taugbøl O, Karlengen IJ, Salbu B, Aastveit AH, Harstad OM (2010) Intravenous injections of cobalt reduce fatty acid desaturation products in milk and blood of lactating cows. J Anim Physiol Anim Nutr 94(5):635–640

    Article  CAS  Google Scholar 

  • Thiede MA, Strittmatter P (1985) The induction and characterization of rat liver stearyl-CoA desaturase mRNA. J Biol Chem 260(27):14459–14463

    PubMed  CAS  Google Scholar 

  • Timmen H, Patton S (1988) Milk fat globules: fatty acid composition, size and in vivo regulation of fat liquidity. Lipids 23(7):685–689

    Article  PubMed  CAS  Google Scholar 

  • Toral PG, Bernard L, Chilliard Y, Glasser F (2013a) Diet-induced variations in milk fatty acid composition have minor effects on the estimated melting point of milk fat in cows, goats, and ewes: insights from a meta-analysis. J Dairy Sci 96:1232–1236

    Article  PubMed  CAS  Google Scholar 

  • Toral PG, Bernard L, Delavaud C, Gruffat D, Leroux C, Chilliard Y (2013b) Effects of fish oil and additional starch on tissue fatty acid profile and lipogenic gene mRNA abundance in lactating goats fed a diet containing sunflower-seed oil. Animal 7(6):948–956

    Google Scholar 

  • Vakalopoulou E, Schaack J, Shenk T (1991) A 32-kilodalton protein binds to AU-rich domains in the 3′ untranslated regions of rapidly degraded mRNAs. Mol Cell Biol 11(6):3355–3364

    PubMed  CAS  Google Scholar 

  • Wahle KWJ, Heys SD, Rotondo D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res 43(6):553–587

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Luo J, Zhong Y, Lin XZ, Shi HB, Zhu JJ, Li J, Sun YT, Zhao WS (2012) Goat liver X receptor alpha, molecular cloning, functional characterization and regulating fatty acid synthesis in epithelial cells of goat mammary glands. Gene 505(1):114–120

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Yu L, Schmidt RE, Su C, Huang X, Gould K, Cao G (2005) Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. Biochem Biophys Res Commun 332(3):735–742

    Article  PubMed  CAS  Google Scholar 

  • Ward RJ, Travers MT, Richards SE, Vernon RG, Salter AM, Buttery PJ, Barber MC (1998) Stearoyl-CoA desaturase mRNA is transcribed from a single gene in the ovine genome. Biochim Biophys Acta 1391(2):145–156

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa T, Haga S, Kobayashi Y, Katoh K, Obara Y (2008) Regulation of hormone-sensitive lipase expression by saturated fatty acids and hormones in bovine mammary epithelial cells. Biochem Biophys Res Commun 376(1):36–39

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Ge L, Parimoo S, Stenn K, Prouty SM (1999) Human stearoyl-CoA desaturase: alternative transcripts generated from a single gene by usage of tandem polyadenylation sites. Biochem J 340(Pt 1):255–264

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Prouty SM, Harmon A, Sundberg JP, Stenn KS, Parimoo S (2001) Scd3–a novel gene of the stearoyl-CoA desaturase family with restricted expression in skin. Genomics 71(2):182–191

    Article  PubMed  CAS  Google Scholar 

  • Zidi A, Fernández-Cabanás VM, Urrutia B, Carrizosa J, Polvillo O, González-Redondo P, Jordana J, Gallardo D, Amills M, Serradilla JM (2010) Association between the polymorphism of the goat stearoyl-CoA desaturase 1 (SCD1) gene and milk fatty acid composition in Murciano-Granadina goats. J Dairy Sci 93(9):4332–4339

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bernard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bernard, L., Leroux, C., Chilliard, Y. (2013). Expression and Nutritional Regulation of Stearoyl-CoA Desaturase Genes in the Ruminant Mammary Gland: Relationship with Milk Fatty Acid Composition. In: Ntambi, Ph.D., J. (eds) Stearoyl-CoA Desaturase Genes in Lipid Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7969-7_13

Download citation

Publish with us

Policies and ethics