Skip to main content

Early Studies on Role of Stearoyl-CoA Desaturase During Preadipocyte Differentiation

  • Chapter
  • First Online:
Stearoyl-CoA Desaturase Genes in Lipid Metabolism

Abstract

Having extensively investigated the catalytic mechanism of action of acetyl-CoA carboxylase (ACC) (Polakis et al. 1972, 1974; Guchhait et al. 1971, 1974a, b; Moss and Lane 1971) and its allosteric regulation by citrate (Moss and Lane 1972; Gregolin et al. 1966; Ryder et al. 1967; Beaty and Lane 1983a, b), in the late 1970s and early 1980s, our lab decided to determine how expression of ACC is controlled. To conduct such studies we needed a lipogenic cell line that could be cultured for extended periods of time (i.e., greater than a week), during which gene expression and protein translation could be assessed. About this time Howard Green and colleagues, who had recently moved from the New York University Medical School to the Massachusetts Institute of Technology (MIT), had established several preadipocyte cell lines—notably the 3T3-L1 and 3T3F442 cell lines (Green and Kehinde 1974, 1975, 1976)—for the study of adipocyte biology. These lines could be induced to differentiate into cells with the phenotype of adipocytes including high rates of lipogenesis (Mackall et al. 1976; Mackall and Lane 1977; Coleman et al. 1978; Student et al. 1980) and responsiveness to insulin (Reed et al. 1977, 1981; Reed and Lane 1980). Since then the 3T3-L1 preadipocyte line has become the “gold standard” for studies on adipocyte differentiation. We (Student et al. 1980) and others (Lai et al. 1982) developed protocols to induce differentiation and demonstrated that expression of fatty acid synthase (FAS), ACC, and numerous other lipogenic proteins paralleled the acquisition of adipocyte morphology. These early observations verified the system and established the primary parameters linked to the utilization of the 3T3-L1 model including (1) an accumulation of cytoplasmic fat as revealed by Oil Red O staining (Mackall et al. 1976), (2) a dramatic increase in the rate of fatty acid synthesis (Mackall et al. 1976; Student et al. 1980), (3) a coordinate increase in the enzymatic activities of ACC (Mackall et al. 1976), FAS, and complex lipids synthesis (triacylglycerol and phospholipids) (Coleman et al. 1978), and (4) hormonally regulated lipid metabolism including insulin-stimulated glucose uptake and lipogenesis and catecholamine-stimulated lipolysis (Reed et al. 1977, 1981; Reed and Lane 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angus CW, Lane MD, Rosenfeld PJ, Kelly TJ (1981) Increase in translatable mRNA for mitochondrial pyruvate carboxylase during differentiation of 3T3-L1 preadipocytes. Biochem Biophys Res Commun 103:1216–1222

    Article  PubMed  CAS  Google Scholar 

  • Beaty NB, Lane MD (1983a) Kinetics of activation of acetyl-CoA carboxylase by citrate: relationship to the rate of polymerization of the enzyme. J Biol Chem 258:13043–13050

    PubMed  CAS  Google Scholar 

  • Beaty NB, Lane MD (1983b) The polymerization of acetyl-CoA carboxylase. J Biol Chem 258:13051–13055

    PubMed  CAS  Google Scholar 

  • Bernlohr DA, Angus CW, Lane MD, Bolanowski MA, Kelly TJ (1984) Expression of specific mRNAs during adipose differentiation: identification of an mRNA encoding a homologue of myelin P2 protein. Proc Natl Acad Sci U S A 81:5468–5472

    Article  PubMed  CAS  Google Scholar 

  • Bernlohr DA, Bolanowski MA, Kelly TJ, Lane MD (1985a) Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3-L1 preadipocytes. J Biol Chem 260:5563–5567

    PubMed  CAS  Google Scholar 

  • Bernlohr DA, Doering TL, Kelly TJ, Lane MD (1985b) Tissue specific expression of p422 protein, a putative lipid carrier, in mouse adipocytes. Biochem Biophys Res Commun 132:850–855

    Article  PubMed  CAS  Google Scholar 

  • Christy RJ, Yang VW, Ntambi JM, Geiman DE, Landschulz WH, Friedman AD, Nakabeppu Y, Kelly TJ, Lane MD (1989) Differentiation-induced gene expression in 3T3-L1 preadipocytes: CCAAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. Genes Dev 3:1323–1335

    Article  PubMed  CAS  Google Scholar 

  • Christy RJ, Kaestner KH, Geiman DE, Lane MD (1991) The CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A 88:2593–2597

    Article  PubMed  CAS  Google Scholar 

  • Coleman RA, Reed BC, Mackall JC, Student AK, Lane MD, Bell RM (1978) Selective changes in microsomal enzymes of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine biosynthesis during differentiation of 3T3-L1 preadipocytes. J Biol Chem 253:7256–7261

    PubMed  CAS  Google Scholar 

  • Cornelius P, MacDougald OA, Lane MD (1994) Regulation of adipocyte development. Annu Rev Nutr 14:99–129

    Article  PubMed  CAS  Google Scholar 

  • Green H, Kehinde O (1974) Sublines of mouse 3T3 cells that accumulate lipid. Cell 1:113–116

    Article  CAS  Google Scholar 

  • Green H, Kehinde O (1975) An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5:19–27

    Article  PubMed  CAS  Google Scholar 

  • Green H, Kehinde O (1976) Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells. Cell 7:105–113

    Article  PubMed  CAS  Google Scholar 

  • Gregolin C, Ryder E, Warner RC, Kleinschmidt AK, Lane MD (1966) Liver acetyl-CoA carboxylase: the dissociation-reassociation process and its relation to catalytic activity. Proc Natl Acad Sci U S A 56:1751–1758

    Article  PubMed  CAS  Google Scholar 

  • Guchhait RB, Moss J, Sokolski W, Lane MD (1971) The carboxyl transferase component of acetyl-CoA carboxylase: structural evidence for intersubunit translocation of the biotin prosthetic group. Proc Natl Acad Sci U S A 68:653–657

    Article  PubMed  CAS  Google Scholar 

  • Guchhait RB, Polakis SE, Dimroth P, Stoll E, Moss J, Lane MD (1974a) Acetyl-CoA carboxylase system of E. coli. purification and properties of the biotin carboxylase, carboxyltransferase, and carboxyl carrier protein components. J Biol Chem 249:6633–6645

    PubMed  CAS  Google Scholar 

  • Guchhait RB, Polakis SE, Hollis D, Fenselau C, Lane MD (1974b) Acetyl-CoA carboxylase system of E. coli. Site of carboxylation of biotin and enzymatic reactivity of 1′-N-(ureido)-carboxybiotin derivatives. J Biol Chem 249:6646–6656

    PubMed  CAS  Google Scholar 

  • Hirsch AM, Rosen OM (1984) Lipolytic stimulation modulates the subcellular distribution of hormone-sensitive lipase in 3T3-L1 cells. J Lipid Res 25:665–677

    PubMed  CAS  Google Scholar 

  • Hwang CS, Mandrup S, MacDougald OA, Geiman DE, Lane MD (1996) Transcriptional activation of the obese gene by CCAAT/enhancer binding proteina. Proc Natl Acad Sci U S A 93:873–877

    Article  PubMed  CAS  Google Scholar 

  • Hwang CS, Loftus TM, Mandrup S, Lane MD (1997) Adipocyte differentiation and leptin expression. Annu Rev Cell Dev Biol 13:231–259

    Article  PubMed  CAS  Google Scholar 

  • Kaestner KH, Ntambi JM, Kelly TJ, Lane MD (1989) Differentiation-induced gene expression in 3T3-L1 preadipocytes: a second differentially-expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 264:14755–14761

    PubMed  CAS  Google Scholar 

  • Kaestner KH, Christy RJ, Lane MD (1990) The mouse insulin-responsive glucose transporter gene: characterization of the gene and transactivation by the CCAAT/enhancer binding protein. Proc Natl Acad Sci U S A 87:251–255

    Article  PubMed  CAS  Google Scholar 

  • Kohanski RA, Frost SC, Lane MD (1986) Insulin-dependent phosphorylation of the insulin receptor-protein kinase and activation of glucose transport in 3T3-L1 adipocytes. J Biol Chem 261:12272–12281

    PubMed  CAS  Google Scholar 

  • Lai E, Rosen OM, Rubin CS (1982) Dexamethasone regulates the beta-adrenergic receptor subtype expressed by 3T3 L1 preadipocytes and adipocytes. J Biol Chem 257:6691–6696

    PubMed  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, Adashi EY, Graves BJ, McKnight SL (1988) Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev 2:786–800

    Article  PubMed  CAS  Google Scholar 

  • Lin FT, Lane MD (1992) Antisense CCAAT/enhancer binding protein α RNA suppresses coordinate gene expression and triglyceride accumulation during differentiation of 3T3-L1 preadipocytes. Genes Dev 6:533–544

    Article  PubMed  CAS  Google Scholar 

  • MacDougald OA, Lane MD (1995) Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 64:345–373

    Article  PubMed  CAS  Google Scholar 

  • MacDougald OA, Hwang CS, Fan H, Lane MD (1995) Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc Natl Acad Sci U S A 92:9034–9037

    Article  PubMed  CAS  Google Scholar 

  • Mackall JC, Lane MD (1977) Role of pyruvate carboxylase in fatty acid synthesis: alterations during preadipocyte differentiation. Biochem Biophys Res Commun 79:720–725

    Article  PubMed  CAS  Google Scholar 

  • Mackall JC, Student AK, Polakis SE, Lane MD (1976) Induction of lipogenesis during differentiation in a “preadipocyte” cell line. J Biol Chem 251:6462–6464

    PubMed  CAS  Google Scholar 

  • Mandrup S, Lane MD (1997) Regulating adipogenesis. J Biol Chem 272:5367–5370

    Article  PubMed  CAS  Google Scholar 

  • Mandrup S, Loftus TM, MacDougald OA, Kuhajda F, Lane MD (1997) Leptin is expressed at in vivo levels by fat pads derived from subcutaneously implanted 3T3-F442A preadipocytes. Proc Natl Acad Sci U S A 94:4300–4305

    Article  PubMed  CAS  Google Scholar 

  • Moss J, Lane MD (1971) The biotin-dependent enzymes. Adv Enzymol 35:321–442

    PubMed  CAS  Google Scholar 

  • Moss J, Lane MD (1972) Acetyl-CoA carboxylase. III. Further studies on the relation of catalytic activity to polymeric state. J Biol Chem 247:4944–4951

    PubMed  CAS  Google Scholar 

  • Novikoff AB, Novikoff PM, Rosen OM, Rubin CS (1980) Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol 87:180–196

    Article  PubMed  CAS  Google Scholar 

  • Ntambi JM, Buhrow S, Kaestner KH, Christy RJ, Sibley E, Kelly TJ, Lane MD (1988) Differentiation-induced gene expression in 3T3-L1 preadipocytes: characterization of a differentially-expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 263:17291–17300

    PubMed  CAS  Google Scholar 

  • Paton CM, Ntambi JM (2009) Biochemical and physiological functions of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 297:E28–E37

    Article  PubMed  CAS  Google Scholar 

  • Polakis SE, Guchhait RB, Lane MD (1972) On the possible involvement of a carbonyl phosphate intermediate in the ATP-dependent carboxylation of biotin. J Biol Chem 247:1335–1337

    PubMed  CAS  Google Scholar 

  • Polakis SE, Guchhait RB, Zwergel EE, Lane MD (1974) Acetyl-CoA carboxylase system of E. coli. Studies of the mechanisms of the biotin carboxylase- and carboxyltransferase-catalyzed reactions. J Biol Chem 249:6657–6667

    PubMed  CAS  Google Scholar 

  • Reed BC, Lane MD (1980) Insulin receptor synthesis and turnover in differentiating 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A 77:285–289

    Article  PubMed  CAS  Google Scholar 

  • Reed BC, Kaufmann SH, Mackall JC, Student AK, Lane MD (1977) Alterations in insulin binding accompanying differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A 74:4876–4880

    Article  PubMed  CAS  Google Scholar 

  • Reed BC, Ronnett GV, Clements PR, Lane MD (1981) Regulation of insulin receptor metabolism: differentiation-induced alteration of receptor synthesis and degradation. J Biol Chem 256:3917–3925

    PubMed  CAS  Google Scholar 

  • Ross SR, Graves RA, Greenstein A, Platt KA, Shyu HL, Mellovitz B, Spiegelman BM (1990) A fat-specific enhancer is the primary determinant of gene expression for adipocyte P2 in vivo. Proc Natl Acad Sci U S A 87:9590–9594

    Article  PubMed  CAS  Google Scholar 

  • Ryder E, Gregolin C, Chang HC, Lane MD (1967) Liver acetyl-CoA carboxylase: insight into the mechanism of activation by tricarboxylic acids and acetyl-CoA. Proc Natl Acad Sci U S A 57:1455–1462

    Article  PubMed  CAS  Google Scholar 

  • Student AK, Hsu RY, Lane MD (1980) Induction of fatty acid synthase synthesis in differentiating 3T3-Ll preadipocytes. J Biol Chem 255:4745–4750

    PubMed  CAS  Google Scholar 

  • Tang QQ, Lane MD (2012) Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem 81:715–736

    Article  PubMed  CAS  Google Scholar 

  • Tang QQ, Otto TC, Lane MD (2003) Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci U S A 100:44–49

    Article  PubMed  CAS  Google Scholar 

  • Thiede MA, Ozols J, Strittmatter P (1986) Construction and sequence of the cDNA for rat liver stearyl coenzyme A desaturase. J Biol Chem 261:13230–13235

    PubMed  CAS  Google Scholar 

  • Watkins PA, Moss J, Pekala PH, Lane MD (1982) Effect of differentiation on the adenylate cyclase system of 3T3-L1 preadipocytes: determination of choleragen substrates in differentiating 3T3-L1 and nondifferentiating 3T3-C2 cells. J Biol Chem 257:14719–14722

    PubMed  CAS  Google Scholar 

  • Zhang JW, Klemm DJ, Vinson C, Lane MD (2003) Transcriptional regulation of CCAAT/enhancer binding protein β gene during adipogenesis: role of CREB. J Biol Chem 279:4471–4478

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the Lane laboratory who contributed to the development of the 3T3-L1 model cell system and whose work laid the foundation for studies on SCD1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Daniel Lane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bernlohr, D.A., Lane, M.D. (2013). Early Studies on Role of Stearoyl-CoA Desaturase During Preadipocyte Differentiation. In: Ntambi, Ph.D., J. (eds) Stearoyl-CoA Desaturase Genes in Lipid Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7969-7_1

Download citation

Publish with us

Policies and ethics