Skip to main content

Beyond Measurement Devices

  • Chapter
  • First Online:
Book cover Metrology for Fire Experiments in Outdoor Conditions

Part of the book series: SpringerBriefs in Fire ((BRIEFSFIRE))

  • 488 Accesses

Abstract

At the field scale, a strongly burning fire is a turbulent flow (Pitts 1991). In the strictest sense, there is no scientific definition of a turbulent flow regime, only a set of properties. For fire, these properties are described empirically through the following scenario (Santoni et al. 2006): in the gas phase, fire can extend over a large range of space and time scales that may extend up to three decades or more. These scales are organised into a cascade in which large-scale vortices transfer a large amount of mechanical energy to smaller vortices, which dissipate the energy through viscous forces. This cascade scales with a power law, in frequency or wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoine-Santoni, T., Santucci, J.-F., de Gentili, E., Silvani, X., & Morandini, F. (2009). Performance of a protected wireless sensor network in a fire. Analysis of fire spread and data transmission. Sensors, 9(8), 5878–5893.

    Google Scholar 

  • Butler, B. W., Cohen, J., Latham, D. J., Schuette, R. D., Sopko, P., Shannon, K. S., et al. (2004). Measurements of radiant emissive power and temperatures in crown fires. Canadian Journal of Forest Research, 34, 1577–1587.

    Article  Google Scholar 

  • Consalvi, J. L. (2012). Influence of turbulence–radiation interactions in laboratory-scale methane pool fires. International Journal of Thermal Sciences, 60, 122–130.

    Article  Google Scholar 

  • Deimling, L., Weiser, V., Blanc, A., Eisenreich, N., Billeb, G., & Kessler, A. (2011). Visualisation of jet fires from hydrogen release. International Journal of Hydrogen Energy, 36, 2360–2366.

    Article  Google Scholar 

  • Frankman, D., Webb, B. W., Butler, B. W., Jimenez, D., & Harrington, M. (2012). The effect of sampling rate on interpretation of the temporal characteristics of radiative and convective heating in wildland flames. International Journal of Wildland Fire, in press.

    Google Scholar 

  • Hargather, M. J., & Settles, G. S. (2012). A comparison of three quantitative schlieren techniques. Optics and Lasers in Engineering, 50, 8–17.

    Article  ADS  Google Scholar 

  • Lavrov, A., Utkin, A. B., Vilar, R., & Fernandes, A. (2006). Evaluation of smoke dispersion from forest fire plumes using lidar experiments and modelling. International Journal of Thermal Sciences, 45, 848–859.

    Article  Google Scholar 

  • Morandini, F., Silvani, X., Rossi, L., Santoni, P.-A., Simeoni, A., Balbi, J.-H., et al. (2006). Fire spread experiment across Mediterranean shrub: Influence of wind on flame front properties. Fire Safety Journal, 41, 229–235.

    Article  Google Scholar 

  • Pitts, W. M. (1991). Wind effects on fires. Progress in Energy and Combustion Science, 17, 83–134.

    Article  Google Scholar 

  • Santoni, P. A., Simeoni, A., Rossi, J. L., Bosseur, F., Morandini, F., Silvani, X., et al. (2006). Instrumentation of wildland fire: Characterisation of a fire spreading through a Mediterranean shrub. Fire Safety Journal, 41, 171–184.

    Article  Google Scholar 

  • Schulz, C., & Sick, V. (2005). Tracer-LIF diagnostics: Quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Progress in Energy and Combustion Science, 31, 75–121.

    Article  Google Scholar 

  • Silvani, X., Morandini, F., & Muzy, J.-F. (2009). Wildfire spread experiments: Fluctuations in thermal measurements. International Communications in Heat and Mass Transfer, 36, 887–892.

    Article  Google Scholar 

  • Utkin, A. B., Fernandes, A., Simo″es, ES, F., Lavrov, A., & Vilar, R. (2003). Feasibility of forest-fire smoke detection using lidar. International Journal of Wildland Fire, 12, 159–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Silvani .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Silvani, X. (2013). Beyond Measurement Devices. In: Metrology for Fire Experiments in Outdoor Conditions. SpringerBriefs in Fire. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7962-8_3

Download citation

Publish with us

Policies and ethics