Advertisement

Cue-Elicited Craving for Cannabis Activates the Reward Neurocircuitry Associated with the Neuropathology of Addiction

  • Samuel J. DeWitt
  • Sven Kroener
  • Francesca M. Filbey
Chapter

Abstract

Craving or the intense desire for a rewarding object or experience is an important factor in the etiology of addiction. Based on the incentive sensitization theory, addiction stems from drug-induced sensitization in dopaminergic reward structures, which attribute incentive-related salience to drug-associated cues. In this way, after repeated coupling with the drug, the cue can trigger similar primary responses in the brain’s reward neurocircuitry as the drug itself. There is growing evidence that cannabis exerts its addictive properties through effects of the endocannabinoid system on the brain reward neurocircuitry. Specifically, the ubiquitous cannabinoid 1 (CB1) receptors play a key role in modulating reward pathways. In the present chapter, we describe the evidence for cue-elicited craving for marijuana, and, more specifically, how in the absence of cannabis itself, cannabis-associated cues trigger activation in the reward pathway implicated in the neuropathology of addiction.

Keywords

Cue-elicited craving Marijuana Addiction Cannabinoid receptors Neuroimaging Endocannabinoid system (−)-Δ9-tetrahydrocannabinol (Δ9-THC) Mesocorticolimbic reward pathway 

References

  1. Adamson SJ, Sellman JD (2003) A prototype screening instrument for cannabis use disorder: the cannabis use disorders identification test (CUDIT) in an alcohol-dependent clinical sample. Drug Alcohol Rev 22(3):309–315PubMedCrossRefGoogle Scholar
  2. Amrhein C, Muhlberger A, Pauli P, Wiedemann G (2004) Modulation of event-related brain potentials during affective picture processing: a complement to startle reflex and skin conductance response? Int J Psychophysiol: official journal of the International Organization of Psychophysiology 54(3):231–240CrossRefGoogle Scholar
  3. Aracil-Fernandez A, Trigo JM, Garcia-Gutierrez MS, Ortega-Alvaro A, Ternianov A, Navarro D, Manzanares J (2012) Decreased cocaine motor sensitization and self- administration in mice overexpressing cannabinoid CB(2) receptors. Neuropsychopharmacology 37(7):1749–1763PubMedCrossRefGoogle Scholar
  4. Atwood BK, Mackie K (2010) CB2: a cannabinoid receptor with an identity crisis. Br J Pharmacol 160(3):467–479PubMedCrossRefGoogle Scholar
  5. Bacci A, Huguenard JR, Prince DA (2004) Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431(7006):312–316PubMedCrossRefGoogle Scholar
  6. Begleiter H, Porjesz B, Bihari B, Kissin B (1984) Event-related brain potentials in boys at risk for alcoholism. Science, New York 225 (4669):1493–1496CrossRefGoogle Scholar
  7. Bordnick PS, Copp HL, Traylor A, Graap KM, Carter BL, Walton A, Ferrer M (2009) Reactivity to cannabis cues in virtual reality environments. J Psychoactive Drugs 41(2):105–112PubMedCrossRefGoogle Scholar
  8. Bouaboula M, Poinot-Chazel C, Bourrie B, Canat X, Calandra B, Rinaldi-Carmona M, Le Fur G, Casellas, P (1995) Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem J 312(2):637–641PubMedGoogle Scholar
  9. Brusco A, Tagliaferro PA, Saez T, Onaivi ES (2008). Ultrastructural localization of neuronal brain CB2 cannabinoid receptors. Ann N Y Acad Sci 1139 450–457PubMedCrossRefGoogle Scholar
  10. Carter BL, Tiffany ST (1999) Cue-reactivity and the future of addiction research. Addiction. Abingdon, England 94(3):349–351Google Scholar
  11. Cheer JF, Marsden CA, Kendall DA, Mason R, (2000) Lack of response suppression follows repeated ventral tegmental cannabinoid administration: an in vitro electrophysiological study. Neuroscience 99(4):661–667PubMedCrossRefGoogle Scholar
  12. Chen J, Paredes W, Lowinson JH, Gardner EL (1990a) Delta 9-tetrahydrocannabinol enhances presynaptic dopamine efflux in medial prefrontal cortex. Eur J Pharmacol 190(1–2):259–262Google Scholar
  13. Chen JP, Paredes W, Li J, Smith D, Lowinson J, Gardner EL, (1990b) Delta 9-tetrahydrocannabinol produces naloxone-blockable enhancement of presynaptic basal dopamine efflux in nucleus accumbens of conscious, freely-moving rats as measured by intracerebral microdialysis. Psychopharmacology 102(2):156–162CrossRefGoogle Scholar
  14. Chevaleyre V, Castillo PE, (2003) Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38(3):461–472PubMedCrossRefGoogle Scholar
  15. Cooper ZD, Haney M (2008) Cannabis reinforcement and dependence: role of the cannabinoid CB1 receptor. Addiction Biol 13(2):188–195CrossRefGoogle Scholar
  16. Cousijn J, Goudriaan AE, Wiers RW (2011) Reaching out towards cannabis: approach- bias in heavy cannabis users predicts changes in cannabis use. Addiction, England 106(9):1667–1674CrossRefGoogle Scholar
  17. Cousijn J, Goudriaan AE, Ridderinkhof KR, den Brink W van, Veltman DJ, Wiers RW (2012a) Approach-bias predicts development of cannabis problem severity in heavy cannabis users: results from a prospective FMRI study. PLoS One 7(9):e42394CrossRefGoogle Scholar
  18. Cousijn J, Goudriaan AE, Ridderinkhof KR, den Brink W van, Veltman DJ, Wiers RW. (2012b). Neural responses associated with cue-reactivity in frequent cannabis users. Addict BiolGoogle Scholar
  19. Crego A, Cadaveira F, Parada M, Corral M, Caamaño-Isorna F, Rodràguez Holguàn S (2012) Increased amplitude of P3 event-related potential in young binge drinkers. Alcohol, New York 46(5):415–25Google Scholar
  20. Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34(5):605–613PubMedGoogle Scholar
  21. Diana M, Melis M, Gessa GL (1998) Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. Eur J Neurosci 10(9):2825–2830PubMedCrossRefGoogle Scholar
  22. Egertova M, Elphick MR (2000) Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J Comp Neurol 422(2):159–171PubMedCrossRefGoogle Scholar
  23. Elsohly MA, Slade D (2005). Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78(5):539–548PubMedCrossRefGoogle Scholar
  24. Fadda P, Scherma M, Spano MS, Salis P, Melis V, Fattore L, Fratta W (2006) Cannabinoid self-administration increases dopamine release in the nucleus accumbens. Neuroreport 17(15):1629–1632PubMedCrossRefGoogle Scholar
  25. Field M, Eastwood B, Bradley BP, Mogg K (2006) Selective processing of cannabis cues in regular cannabis users. Drug Alcohol Depend 85(1):75–82PubMedCrossRefGoogle Scholar
  26. Filbey FM, DeWitt SJ (2012) Cannabis cue-elicited craving and the reward neurocircuitry. Prog Neuropsychopharmacol Biol Psychiatry 38(1):30–35PubMedCrossRefGoogle Scholar
  27. Filbey FM, Ray L, Smolen A, Claus ED, Audette A, Hutchison KE (2008) Differential neural response to alcohol priming and alcohol taste cues is associated with DRD4 VNTR and OPRM1 genotypes. Alcohol Clin Exp Res 32(7):1113–1123PubMedCrossRefGoogle Scholar
  28. Filbey FM, Schacht JP, Myers US, Chavez RS, Hutchison KE (2009) Marijuana craving in the brain. Proc Natl Acad Sci U S A 106(31):13016–13021PubMedCrossRefGoogle Scholar
  29. Franken IH, Stam CJ, Hendriks VM, den Brink W van (2003) Neurophysiological evidence for abnormal cognitive processing of drug cues in heroin dependence. Psychopharmacology 170(2):205–212PubMedCrossRefGoogle Scholar
  30. Franken IH, Dietvorst RC, Hesselmans M, Franzek EJ, Wetering BJ van de, Van Strien JW (2008) Cocaine craving is associated with electrophysiological brain responses to cocaine-related stimuli. Addict Biol 13(3–4):386–392PubMedCrossRefGoogle Scholar
  31. French ED, Dillon K, Wu X (1997) Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport 8(3):649–652PubMedCrossRefGoogle Scholar
  32. Freund TF, Katona I, Piomelli D, (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83(3):1017–1066PubMedGoogle Scholar
  33. Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232(1):54–61PubMedCrossRefGoogle Scholar
  34. Gallinat J, Rentzsch J, Roser P (2012) Neurophysiological effects of cannabinoids: implications for psychosis research. Curr Pharm Des 18(32):4938–49PubMedCrossRefGoogle Scholar
  35. Gardner EL (2005) Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav 81(2):263–284PubMedCrossRefGoogle Scholar
  36. Geier A, Mucha RF, Pauli P (2000) Appetitive nature of drug cues confirmed with physiological measures in a model using pictures of smoking. Psychopharmacology 150(3):283–291PubMedCrossRefGoogle Scholar
  37. Gerdeman GL, Ronesi J, Lovinger DM (2002) Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5(5):446–451PubMedGoogle Scholar
  38. Gessa GL, Melis M, Muntoni AL, Diana M (1998) Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur J Pharmacol 341(1):39–44PubMedCrossRefGoogle Scholar
  39. Glass M, Dragunow M, Faull RL (1997) Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77(2):299–318PubMedCrossRefGoogle Scholar
  40. Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159(10):1642–1652PubMedCrossRefGoogle Scholar
  41. Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, Uhl GR (2006) Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 1071(1):10–23PubMedCrossRefGoogle Scholar
  42. Gray KM, LaRowe SD, Upadhyaya HP (2008) Cue reactivity in young marijuana smokers: a preliminary investigation. Psychol Addict Behav 22(4):582–586PubMedCrossRefGoogle Scholar
  43. Haj-Dahmane S, Shen RY, (2010) Regulation of plasticity of glutamate synapses by endocannabinoids and the cyclic-AMP/protein kinase A pathway in midbrain dopamine neurons. Journal Physiol 588(14):2589–2604CrossRefGoogle Scholar
  44. Haughey HM, Marshall E, Schacht JP, Louis A, Hutchison KE (2008) Marijuana withdrawal and craving: influence of the cannabinoid receptor 1 (CNR1) and fatty acid amide hydrolase (FAAH) genes. Addiction 103(10):1678–1686PubMedCrossRefGoogle Scholar
  45. Heifets BD, Castillo PE, (2009) Endocannabinoid signaling and long-term synaptic plasticity. Annu Rev Physiol 71:283–306PubMedCrossRefGoogle Scholar
  46. Heishman SJ, Singleton EG, Liguori A (2001) Marijuana Craving Questionnaire: development and initial validation of a self-report instrument. Addiction, England 96(7):1023–1034CrossRefGoogle Scholar
  47. Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, Costa BR de, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87(5):1932–1936PubMedCrossRefGoogle Scholar
  48. Herkenham M, Groen BG, Lynn AB, De Costa BR, Richfield EK. (1991). Neuronal localization of cannabinoid receptors and second messengers in mutant mouse cerebellum. Brain Res 552(2):301–310PubMedCrossRefGoogle Scholar
  49. Hoffman AF, Lupica CR (2001) Direct actions of cannabinoids on synaptic transmission in the nucleus accumbens: a comparison with opioids. J Neurophysiol 85(1):72–83PubMedGoogle Scholar
  50. Hommer DW, Bjork JM, Gilman JM. (2011). Imaging brain response to reward in addictive disorders. Ann N Y Acad Sci 1216 50–61PubMedCrossRefGoogle Scholar
  51. Howlett AC (2002) The cannabinoid receptors. Prostaglandins & other lipid mediators 68–69:619–631Google Scholar
  52. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54(2):161–202Google Scholar
  53. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598Google Scholar
  54. Johnson SW, North RA (1992) Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol 450:455–468PubMedGoogle Scholar
  55. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiological reviews 89:309–380Google Scholar
  56. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238PubMedCrossRefGoogle Scholar
  57. Kreitzer AC, Regehr WG. (2001). Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. J Neurosci 21(20) RC174PubMedGoogle Scholar
  58. Laberg JC, Ellertsen B (1987) Psychophysiological indicators of craving in alcoholics: effects of cue exposure. Br J Addict 82(12):1341–1348PubMedCrossRefGoogle Scholar
  59. Lanciego JL, Barroso-Chinea P, Rico AJ, Conte-Perales L, Callen L, Roda E, Franco R (2011) Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of Macaca fascicularis. J Psychopharmacol, England 25(1):97–104CrossRefGoogle Scholar
  60. Lang PJ, Davis M (2006). Emotion, motivation, and the brain: reflex foundations in animal and human research. Prog Brain Res 156 3–29PubMedCrossRefGoogle Scholar
  61. Lubman DI, Allen NB, Peters LA, Deakin JF (2007) Electrophysiological evidence of the motivational salience of drug cues in opiate addiction. Psychol Med 37(8):1203–1209PubMedCrossRefGoogle Scholar
  62. Lupica CR, Riegel AC, Hoffman AF (2004) Marijuana and cannabinoid regulation of brain reward circuits. Br J Pharmacol 143(2):227–234PubMedCrossRefGoogle Scholar
  63. Mackie K, Hille B, (1992) Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci U S A 89(9):3825–3829Google Scholar
  64. Mackie K, Lai Y, Westenbroek R, Mitchell R, (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci 15(10):6552–6561Google Scholar
  65. Manzoni OJ, Bockaert J (2001). Cannabinoids inhibit GABAergic synaptic transmission in mice nucleus accumbens. Eur J Pharmacol 412(2) 3–5.CrossRefGoogle Scholar
  66. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418(6897):530–534Google Scholar
  67. Matsuda LA, Bonner TI, Lolait SJ (1993) Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol 327(4):535–550PubMedCrossRefGoogle Scholar
  68. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564PubMedCrossRefGoogle Scholar
  69. McClernon FJ, Hiott FB, Huettel SA, Rose JE (2005) Abstinence-induced changes in self-report craving correlate with event-related FMRI responses to smoking cues. Neuropsychopharmacology 30(10):1940–1947PubMedCrossRefGoogle Scholar
  70. McRae-Clark AL, Carter RE, Price KL, Baker NL, Thomas S, Saladin ME, Brady KT. (2011). Stress- and cue-elicited craving and reactivity in marijuana-dependent individuals. PsychopharmacologyGoogle Scholar
  71. Melis M, Pistis M, Perra S, Muntoni AL, Pillolla G, Gessa GL (2004) Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci 24(1):53–62PubMedCrossRefGoogle Scholar
  72. Morgan NH, Stanford IM, Woodhall GL (2009) Functional CB2 type cannabinoid receptors at CNS synapses. Neuropharmacology 57(4):356–368PubMedCrossRefGoogle Scholar
  73. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65PubMedCrossRefGoogle Scholar
  74. Nickerson LD, Ravichandran C, Lundahl LH, Rodolico J, Dunlap S, Trksak GH, Lukas SE (2011) Cue reactivity in cannabis-dependent adolescents. Psychol Addict Behav 25(1):168–173PubMedCrossRefGoogle Scholar
  75. Ohno-Shosaku T, Maejima T, Kano M (2001) Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29(3):729–738PubMedCrossRefGoogle Scholar
  76. Onaivi ES, Ishiguro H, Gong JP, Patel S, Meozzi PA, Myers L, Perchuk A, Mora Z, Tagliaferro PA, Gardner E, Brusco A, Akinshola BE, Liu QR, Chirwa SS, Hope B, Lujilde J, Inada T, Iwasaki S, Macharia D, Teasenfitz L, Arinami T, Uhl GR (2008) Functional expression of brain neuronal CB2 cannabinoid receptors are involved in the effects of drugs of abuse and in depression. Ann N Y Acad Sci 1139 434–449Google Scholar
  77. Polich J, Criado JR (2006) Neuropsychology and neuropharmacology of P3a and P3b. Int J Psychophysiol 60(2):172–185PubMedCrossRefGoogle Scholar
  78. Robbe D, Alonso G, Duchamp F, Bockaert J, Manzoni OJ (2001) Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J Neurosci 21(1):109–116Google Scholar
  79. Schacht JP, Selling RE, Hutchison KE (2009) Intermediate cannabis dependence phenotypes and the FAAH C385A variant: an exploratory analysis. Psychopharmacology (Berl) 203(3):511–517. doi: 10.1007/s00213–008-1397-zCrossRefGoogle Scholar
  80. Schmidt W, Schafer F, Striggow V, Frohlich K, Striggow F (2012). Cannabinoid receptor subtypes 1 and 2 mediate long-lasting neuroprotection and improve motor behavior deficits after transient focal cerebral ischemia. Neuroscience 227 313–326. doi: 10.1016/j.neuroscience.2012.09.080PubMedCrossRefGoogle Scholar
  81. Schupp HT, Cuthbert BN, Bradley MM, Cacioppo JT, Ito T, Lang PJ, (2000) Affective picture processing: the late positive potential is modulated by motivational relevance. Psychophysiology 37(2):257–261Google Scholar
  82. Schupp HT, Flaisch T, Stockburger J, Junghofer M (2006) Emotion and attention: event-related brain potential studies. Prog Brain Res 156:31–51Google Scholar
  83. Sidhpura N, Parsons LH (2011) Endocannabinoid-mediated synaptic plasticity and addiction-related behavior. Neuropharmacology 61(7):1070–1087PubMedCrossRefGoogle Scholar
  84. Singleton EG, Trotman AJ, Zavahir M, Taylor RC, Heishman SJ (2002) Determination of the reliability and validity of the Marijuana Craving Questionnaire using imagery scripts. Exp Clin Psychopharmacol 10(1):47–53PubMedCrossRefGoogle Scholar
  85. Szabo B, Siemes S, Wallmichrath I (2002) Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur J Neurosci 15(12):2057–2061PubMedCrossRefGoogle Scholar
  86. Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science, New York 276(5321):2048–2050CrossRefGoogle Scholar
  87. Theunissen EL, Kauert GF, Toennes SW, Moeller MR, Sambeth A, Blanchard MM, Ramaekers JG (2012) Neurophysiological functioning of occasional and heavy cannabis users during THC intoxication. Psychopharmacology 220(2):341–50PubMedCrossRefGoogle Scholar
  88. Tsou K, Mackie K, Sanudo-Pena MC, Walker JM (1999) Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation. Neuroscience 93(3):969–975PubMedCrossRefGoogle Scholar
  89. Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Sharkey KA (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science, New York 310(5746):329–332CrossRefGoogle Scholar
  90. Volkow ND, Fowler JS, Wang GJ, Goldstein RZ (2002) Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol Learn Mem 78(3):610–624PubMedCrossRefGoogle Scholar
  91. Volkow ND, Fowler JS, Wang GJ (2004) The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies. Neuropharmacology 47 Suppl 1:3–13Google Scholar
  92. Weiss F (2005) Neurobiology of craving, conditioned reward and relapse. Curr Opin Pharmacol 5(1):9–19PubMedCrossRefGoogle Scholar
  93. Wenger T, Moldrich G, Furst S, (2003) Neuromorphological background of cannabis addiction. Brain Res Bull 61(2):125–128Google Scholar
  94. Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410(6828):588–592PubMedCrossRefGoogle Scholar
  95. Wolfling K, Flor H, Grusser SM (2008) Psychophysiological responses to drug- associated stimuli in chronic heavy cannabis use. Eur J Neurosci 27(4):976–983PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Samuel J. DeWitt
    • 1
  • Sven Kroener
    • 1
  • Francesca M. Filbey
    • 1
  1. 1.School of Behavioral and Brain SciencesUniversity of Texas at DallasDallasUSA

Personalised recommendations