Skip to main content

Endocannabinoid Signaling and the Regulation of the Serotonin System

Abstract

Endogenous cannabinoids, also called endocannabinoids (eCBs), are lipid signaling molecules in the mammalians’ central nervous system (CNS), where they regulate neuronal functions and behaviors by activating cannabinoid receptors. The ubiquitous distribution of eCBs in neuronal populations that are associated with stress responses, such as dorsal raphe nucleus (DRn) serotonin (5-HT) neurons suggests that eCB signaling plays a central role in the regulation of stress-related behaviors. Consistent with this notion, human and animal studies have established that eCB signaling is a key modulator of emotional homeostasis and that a dysfunction of eCB signaling contributes to stress-related psychiatric disorders, including anxiety and depression. This leads to the current view that the eCB signaling could be an excellent target for the development of novel therapeutic intervention for stress-related mood disorders. Over the past few years, extensive research has focused on the functional interaction between eCB signaling and 5-HT systems. As a result, steady progress is made in our understanding of the cellular mechanisms by which eCB signaling regulates the function of 5-HT system. In this chapter, we review the most recent advances in our understanding of the cellular mechanisms by which eCBs modulate the function of the 5-HT system and how stress mediators regulate eCB signaling in the DRn.

Keywords

  • Dorsal raphe
  • Endocannabinoid
  • Serotonin
  • CB1 receptors
  • Glutamate
  • Stress
  • Glucocorticoids

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-7940-6_11
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-7940-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3

Abbreviations

eCBs:

endocannabinoids

5-HT:

5-hydroxytryptamine (serotonin)

DRn:

dorsal raphe nucleus

DAGLs:

diacyl-glycerol lipase

COX-2:

cyclooxygenase type 2

MGL:

monoglyceride lipases

FAAH:

fatty acid amid hydrolase

EPSC:

excitatory postsynaptic current

WIN 55,212-2:

R-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolol[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate

DSE:

depolarization-induced suppression of excitation

PPR:

paired-pulse ratio

CV:

coefficient of variation

LTD:

long-term depression

JZL 184:

4-[Bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxyl acid 4-nitrophenyl ester

PF 750:

N-phenyl-4-(3-quinolinylmethyl)-1-piperidinecarboxamide

References

  • Aso E, Renoir T, Mengod G, Ledent C, Hamon M, Maldonado R, Lanfumey L, Valverde O (2009) Lack of CB1 receptor activity impairs serotonergic negative feedback. J Neurochem 109:935–944

    PubMed  CrossRef  CAS  Google Scholar 

  • Bambico FR, Katz N, Debonnel G, Gobbi G (2007) Cannabinoids elicit antidepressant-like behavior and activate serotoninergic neurons through the medial prefrontal cortex. J Neurosci 27:11700–11711

    PubMed  CrossRef  CAS  Google Scholar 

  • Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, Matias I, Schiano-Moriello A, Paul P, Williams EJ, Gangadharan U, Hobbs C, Di Marzo V, Diherty P (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163:463–468

    PubMed  CrossRef  CAS  Google Scholar 

  • Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomelli D (1997) Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277:1094–1097

    PubMed  CrossRef  CAS  Google Scholar 

  • Breder CD, Dewitt D, Kraig RP (1995) Characterization of inducible cyclooxygenase in rat brain. J Comp Neurol 355:296–315

    PubMed  CrossRef  CAS  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    PubMed  CrossRef  CAS  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of brain constituent that binds to cannabinoid receptor. Science 258:1946–1949

    PubMed  CrossRef  CAS  Google Scholar 

  • Di S, Malcher-Lopes R, Halmos KC, Tasker JG (2003) Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci 23:4850–4857

    PubMed  CAS  Google Scholar 

  • Doze VA, Handel EM, Jensen KA, Darsie B, Luger EJ, Haselton JR, Talbot JN (2009) Rorabaugh BR. α1A- and α1B-adrenergic receptors differentially modulate antidepressant-like behavior in the mouse. Brain Res 1285:148–137

    PubMed  CrossRef  CAS  Google Scholar 

  • Duma D, Jewell C, Cidlowski JA (2006) Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modifications. J Steroid Biochem Mol Biol 102:11–21

    PubMed  CrossRef  CAS  Google Scholar 

  • Egashira N, Mishima K, Katsurabayashi S, Yoshitake T, Matsumoto Y, Ishida J, Yamaguchi M, Iwasaki K, Fujiwara M (2002) Involvement of 5-hydroxytryptamine neuronal system in Delta (9)-tetrahydrocannabinol-induced impairment of spatial memory. Eur J Pharmacol 445:221–229

    PubMed  CrossRef  CAS  Google Scholar 

  • Egertová M, Elphick MR (2000) Localization of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB1. J Comp Neurol 422:159–171

    PubMed  CrossRef  Google Scholar 

  • Egertová M, Cravatt BF, Elphick MR (2003) Comparative analysis of fatty acid amid hydrolase and CB1 cannabinoid receptor expression in the mouse brain: evidence of a widespread role of fatty acid amid hydrolase. Neuroscience 119:481–496

    PubMed  CrossRef  Google Scholar 

  • Englert LF, Ho BT, Taylor D (1973) The effects of (-)-∆9-tetrahydrocannabinol on reserpine-induced hypothermia in rats. Br J Pharmacol 49:243–252

    PubMed  CrossRef  CAS  Google Scholar 

  • Freemon FR (1976) Effects of marihuana on sleeping states. JAMA 220:1364–1365

    CrossRef  Google Scholar 

  • Galiėgue S, Mary S, Marchand J, Dussossoy D, Carrière D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61

    PubMed  CrossRef  Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    CrossRef  CAS  Google Scholar 

  • Gobbi G, Bambico ER, Mangieri R, Bortolato M, Campolongo P, Solinas M, Cassano M, Morgese MG, Debonnel G, Duranti A, Tontini A, Tarzia G, Mor M, Trezza V, Goldberg SR, Cuomo V, Piomelli D (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci USA 102:18620–18625

    PubMed  CrossRef  CAS  Google Scholar 

  • Goparaju SK, Ueda N, Taniguchi K, Yamamoto S (1999) Enzymes of porcine brain hydrolyzing 2-arachidonoylglycerol an endogenous ligand of cannabinoid receptors. Biochem Pharmacol 57:417–423

    PubMed  CrossRef  CAS  Google Scholar 

  • Grahn RE, Hammack SE, Will MJ, O’Connor KA, Deak T, Sparks PD, Watkins LR, Maier SF (2002) Blockade of alpha1 adrenoreceptors in the dorsal raphe nucleus prevents enhanced conditioned fear and impaired escape performance following uncontrollable stressor exposure in rats. Behav Brain Res 134:387–392

    PubMed  CrossRef  CAS  Google Scholar 

  • Griebel G, Stemmelin J, Scatton B (2005) Effects of cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biol Psychiatry 57:261–267

    PubMed  CrossRef  CAS  Google Scholar 

  • Haj-Dahmane S, Shen R-Y (2005) The wake-promoting peptide orexin-B inhibits glutamatergic transmission to dorsal raphe nucleus serotonin neurons through retrograde endocannabinoid signaling. J Neurosci 25:896–905

    PubMed  CrossRef  CAS  Google Scholar 

  • Haj-Dahmane S, Shen R-Y (2009) Endocannabinoids suppress excitatory synaptic transmission to dorsal raphe serotonin neurons through the activation of presynaptic CB1 receptors. J Pharmacol Exp Ther 331:186–196

    PubMed  CrossRef  CAS  Google Scholar 

  • Haller J, Varga B, Ledent C, Freund T (2004) CB1 cannabinoid receptors mediate anxiolytic effects: convergent genetic and pharmacological evidence with CB1-specific agents. Behav Pharmacol 15:299–304

    PubMed  CrossRef  CAS  Google Scholar 

  • Häring M, Guggenhuber S, Lutz B (2012) Neuronal populations mediating the effects of endocannabinoids on stress and emotionality. Neuroscience 204:145–158

    PubMed  CrossRef  Google Scholar 

  • Herkenham M, Lynn A, Johnson MR, Melvin LS, Costa BR de, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  • Hillard CJ, Weinlander KM, Stuhr KL (2012) Contribution of endocannabinoid signaling to psychiatric disorders in human: genetic and biochemical evidence. Neuroscience 204:207–229

    PubMed  CrossRef  CAS  Google Scholar 

  • Howlett AC (2005) Cannabinoid receptor signaling. Handb Exp Pharmacol 168:53–79

    PubMed  CrossRef  CAS  Google Scholar 

  • Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309–380

    PubMed  CrossRef  CAS  Google Scholar 

  • Karst H, Berger S, Turiault M, Tronche F, Schütz G, Joëls M (2005) Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc natl Acd Sci USA 102:19204–19207

    CrossRef  CAS  Google Scholar 

  • Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81

    PubMed  CrossRef  CAS  Google Scholar 

  • Katona I, Freund TF (2012) Multiple functions of endocannabinoid signaling in the brain. Ann Rev Neurosci 35:529–558

    PubMed  CrossRef  CAS  Google Scholar 

  • Kozak KR, Rowlinson SW, Marnett LJ (2000) Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J Biol Chem 275:33744–33749

    PubMed  CrossRef  CAS  Google Scholar 

  • Krugers H, Karst H, Joels M (2012) Interaction between noradrenaline and corticosteroids in the brain: from electrical activity to cognitive performance. Front Cell Neurosci 6:15

    PubMed  CrossRef  CAS  Google Scholar 

  • Lanfumey L, Mongeau R, Cohen-Salmon C, Hamon M (2008) Corticosteroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci Biobehav Rev 32:1174–1184

    PubMed  CrossRef  CAS  Google Scholar 

  • Long JZ, Nomura DK, Vann RE, Walentiny DM, Booker L, Jin X, Burston JJ, Sim-Selley LJ, Lichman AH, Wiley JL, Cravatt BF (2009) Dual blockade of FAAH MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc Natl Acad Sci 106:20270–20275

    PubMed  CrossRef  CAS  Google Scholar 

  • Malone DT, Taylor DA (2001) Involvement of somatodendritic 5-HT (1A) receptors in Delta (9)-tetrahydrocannabinol-induced hypothermia in the rat. Pharmacol Biochem Behav 69:595–601

    PubMed  CrossRef  CAS  Google Scholar 

  • Marco EM, Perez-Alverez L, Borcel E, Rubio M, Guaza C, Ambrosio E, File SE, Viveros MP (2004) Involvement of 5-HT1A receptors in behavioral effects of the cannabinoid receptor agonist CP 55, 94 in male rats. Behav Pharmacol 15:21–27

    PubMed  CrossRef  CAS  Google Scholar 

  • Marrs WR, Blankman JL, Horne EA, Thomazeau A, Lin YH, Coy J, Bodor AL, Muccioli GG, Hu SS-J, Woodruff G, Fung S, Lafourcade M, Alexander JP, Long JZ, Xu C, Möller T, Mackie K, Manzoni OJ, Cravatt BF, Stella N (2010) The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nat Neurosci 13:651–957

    CrossRef  Google Scholar 

  • Mato S, Aso E, Martin M, Valverde O, Maldonado R, Pazos A (2007) CB1 knockout mice display impaired functionality of 5-HT1A and 5-HT2A/C receptors. J Neurochem 103:2111–2120

    PubMed  CrossRef  CAS  Google Scholar 

  • Matsuda LA, Bonner TL, Lolait SJ (1993) Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol 327:535–550

    PubMed  CrossRef  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    PubMed  CrossRef  CAS  Google Scholar 

  • Mechoulam R, Parker LA (2012) The endocannabinoid system and the brain. Annu Rev Psychol 64:6.1–6.27

    Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z (1995) Identification of endogenous 2-monoglyceride, present in canine gut that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    PubMed  CrossRef  CAS  Google Scholar 

  • Mendiguren A, Pineda J (2009) Effect of the CB1 receptor antagonists rimonabant and AM251 on the firing rate of dorsal raphe nucleus neurons in rat brain slices. Br J Pharmacol 158:1579–1587

    PubMed  CrossRef  CAS  Google Scholar 

  • Moranta D, Esteban S, Garcia-Sevilla JA (2009) Chronic treatment and withdrawal of the cannabinoid agonist WIN 55,212–2 modulate the sensitivity of presynaptic receptors involved in the regulation of monoamine syntheses in rat brain. Naunyn-Schmiedeberg’s Arch Pharmacol 379:61–72

    CrossRef  CAS  Google Scholar 

  • Morilak DA, Barrera G, Echevarria DJ, Garcia AS, Hernandez A, Ma S, Petre CO (2005) Role of brain norepinephrine in the behavioral response to stress. Prog Neuropsychopharmacol Biol Psychiatry 29:1214–1224

    PubMed  CrossRef  CAS  Google Scholar 

  • Morsink MC, Steenbergen PJ, Vos JB, Karst H, Joëls M, Kloet ER de, Datson NA (2006) Acute activation of hippocampal glucocorticoid receptors results in different waves of gene. J Neuroendocrinol 18:239–252

    PubMed  CrossRef  CAS  Google Scholar 

  • Muccioli GG (2010) Endocannabinoid biosynthesis and inactivation, from simple to complex. Drug Discov Today 15:474–483

    PubMed  CrossRef  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    PubMed  CrossRef  CAS  Google Scholar 

  • Murillo-Rodriguez E, Vázquez E, Millan-Aldaco D, Palomero-Rivero M, Drucker-Colin R (2007) Effects of the fatty acid amide hydrolase inhibitor URB597 on the sleep-wake cycle, c-Fos expression and dopamine levels in the rats. Eur J Pharmacol 562(1–2):82–91

    PubMed  CrossRef  CAS  Google Scholar 

  • Murillo-Rodriguez E, Millán-Aldaco D, Di Marzo V, Drucker-Colin R (2008) The anandamide membrane transporter inhibitor, VDM-11 modulates sleep and c-Fos expression in the rat brain. Neuroscience 157:1–11

    PubMed  CrossRef  CAS  Google Scholar 

  • Murillo-Rodriguez E, Palomero-Rivero M, Millan-Aldaco D, Aris-Carrion O, Drucker-Colin R (2011) Administration of URB597, oleoylethanolamide or palmitoylethanolamide increases waking and dopamine in rats. PloS One 6:e20766

    PubMed  CrossRef  CAS  Google Scholar 

  • Nakazi M, Bauer U, Nickel T, Kathmann M, Schlicker E (2000) Inhibition of serotonin release in the mouse brain via presynaptic CB receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 361:19–24

    CrossRef  CAS  Google Scholar 

  • Okamoto Y, Morishita J, Tsuboi K, Tonai T, Useda N (2004) Molecular characterization of phospholipase D generating anandamide and its congeners. J Biol Chem 279:5298–5305

    PubMed  CrossRef  CAS  Google Scholar 

  • O’Leary OF, Bechtholt AJ, Crowley JJ, Valentino RJ, Lucki I (2007) The role of noradrenergic tone in the dorsal raphe nucleus of the mouse in the acute behavioral effects of antidepressant drugs. Eur Neuropsychopharmacol 17:215–226

    PubMed  CrossRef  Google Scholar 

  • Pan B, Wang W, Long JZ, Sun D, Hillard CJ, Cravatt BF, Liu QS (2009) Blockade of 2-arachidonoylglycerol hydrolysis by selective monoacylglycerol lipase inhibitor 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxyl)methyl)piperidine-1-carboxylate (JZL 184) enhances retrograde endocannabinoid signaling. J Pharmacol Exp Ther 331:591–597

    PubMed  CrossRef  CAS  Google Scholar 

  • Patel S, Hillard CJ (2006) Pharmacooogical evaluation of cannabinoid receptor ligands in a mouse model of anxiety: further evidence for an anxiolytic role for endogenous cannabinoid signaling. J Pharmacol Exp Ther 318:304–311

    PubMed  CrossRef  CAS  Google Scholar 

  • Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ (2004) Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology 145:5431–5438

    PubMed  CrossRef  CAS  Google Scholar 

  • Patel S, Roelke CT, Rademacher DJ, Hillard CJ (2005) Inhibition of restraint stress-induced neuronal and behavioral activation of endogenous cannabinoid signaling. Eur J Neurosci 21:1057–1069

    PubMed  CrossRef  Google Scholar 

  • Segawa T, Takeuchi S, Nakano M (1976) Mechanism for the increase of brain 5-hydroxytryptamine and 5-hydroxyindoleacetic acid following ∆9- tetrahydrocannabinol administration to rats. Japan J Pharmacol 26:377–379

    CrossRef  CAS  Google Scholar 

  • Simon GM, Cravatt BF (2008) Anandamide biosynthesis catalyzed by the phosphodiesterase GDE1 and detection glycerophospho-N-acyl ethanolamine precursors in mousebrain. J Biol Chem 283:9341–9349

    PubMed  CrossRef  CAS  Google Scholar 

  • Stella N, Schweittzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388:773–778

    PubMed  CrossRef  CAS  Google Scholar 

  • Stone EA, Quartermain D, Lin Y, Lehmann MJ (2007) Central α 1-adrenergic system in behavioral activity and depression. Biochem Pharmacol 73:1063–1075

    PubMed  CrossRef  CAS  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A (1995) Waku K. 2-arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97

    PubMed  CrossRef  CAS  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A, Tonegawa T, Nakane S, Yamashita A, Waku K (1996) Enzymatic synthesis of anandamide, an endogenous cannabinoid receptor ligand, through N-acylphosphatidylethanolamine pathway in testis: involvement of Ca(2+)-dependent trancyclase and phosphodiesterase activities. Biochem Biophys Res Commun 218:113–117

    PubMed  CrossRef  CAS  Google Scholar 

  • Sun YX, Tsuboi K, Okamoto Y, Tonai T, Murakami M, Kudo I, Ueda N (2004) Biosynthesis of anandamide and N-palmitoylethanolamine by sequential actions of phospholipase A2 and lysophospholipase D. Biochem J 380:749–756

    PubMed  CrossRef  CAS  Google Scholar 

  • Tanimura A, Yamazaki A, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, Kita Y, Hashimoto K, Shimizu T, Watanabe M, Sakimura K, Kano M (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase α mediates retrograde suppression of synaptic transmission. Neuron 65:320–327

    PubMed  CrossRef  CAS  Google Scholar 

  • Tao R, Ma Z. (2012) Neuronal circuit in the dorsal raphe nucleus responsible for cannabinoid-mediated increases in 5-Ht efflux in the nucleus accumbens of the rat. ISRN Pharmacol 2012:276902 doi: 10.5402/2012/276902

    PubMed  Google Scholar 

  • Tzavara ET, Davis RJ, Perry KW, Li X, Salhoff C, Bymaster FP, Witkin JM, Nomikos GG (2003) The CB1 receptor antagonist SR 141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Br J Pharmacol 138:544–553

    PubMed  CrossRef  CAS  Google Scholar 

  • Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison JS, Mernett LJ, Di Marzo V, Pittman QJ, Patel KD, Sharkey KA (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 31:329–332

    CrossRef  Google Scholar 

  • Wang J, Shen R-Y, Haj-Dahmane S (2012) Endocannabinoids mediate the glucocorticoid-induced inhibition of excitatory synaptic transmission to dorsal raphe serotonin neurons. J Physiol 590:5795–5808

    PubMed  CrossRef  CAS  Google Scholar 

  • Ward SJ, Lefever TW, Jackson C, Tallarida RJ, Walker EA (2008) Effect of cannabinoid 1 receptor antagonist and serotonin 2C receptor agonist alone and in combination on motivation for palatable food: a dose-addition analysis study in mice.

    Google Scholar 

  • Williamson EM, Evans FJ (2000) Cannabinoids in clinical practice. Drugs 60:1303–1314

    PubMed  CrossRef  CAS  Google Scholar 

  • Zavitsanou K, Wang H, Dalton VS, Nguyen V (2010) Cannabinoid administration increases 5HT1A receptor binding and mRNA expression in the hippocampus of adult but not adolescent rats. Neuroscience 169:315–324

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgements

Work in the Author’s lab was supported by research grants from the National Institutes of Health research grant MH 078009 to S. HD and AA12435 to R-Y. S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Haj-Dahmane PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haj-Dahmane, S., Shen, RY. (2013). Endocannabinoid Signaling and the Regulation of the Serotonin System. In: Van Bockstaele, E. (eds) Endocannabinoid Regulation of Monoamines in Psychiatric and Neurological Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7940-6_11

Download citation