Histone Methyltransferase Complexes in Transcription, Development, and Cancer

  • Jonathan B. Olsen
  • Jack Greenblatt
  • Andrew Emili
Chapter

Abstract

Dynamic regulation of the mammalian epigenome enables precise control of the developmental gene expression programs that direct stem and progenitor cell proliferation, self-renewal, and differentiation. Among the posttranslational modifications that occur on chromatin, histone methylation is a key epigenetic mark with central roles in virtually all DNA-templated processes, including gene transcription by RNA polymerase II (RNAPII). Histone methylation is catalyzed by various histone methyltransferase enzymes, which typically operate within the context of conserved macromolecular complexes. Characterization of the composition and function of histone methyltransferase complexes is critical to understanding the molecular and epigenetic underpinning of cell fate decisions during development. Aberrant histone methylation is frequently observed at the onset and progression of the disease state, originating either directly by inactivating or activating causal mutations that drive pathogenesis or indirectly as facilitators that perpetuate cancer-related pathways. Here, we review the molecular biology of diverse, often conserved, multicomponent histone methyltransferase complexes with emphasis on the biochemical and physiological roles of these complexes in transcription regulation and chromatin architecture in normal development and human diseases such as cancer.

Keywords

Chromatin Histone Methylation Methyltransferase Polycomb Trithorax Protein complex Transcription Epigenetics Noncoding RNA 

References

  1. 1.
    Allfrey V, Faulkner R, Mirsky A. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA. 1964;51:786–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Luger K, Mäder A, Richmond R, Sargent D, Richmond T. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Bannister A, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.PubMedCrossRefGoogle Scholar
  4. 4.
    Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.PubMedCrossRefGoogle Scholar
  5. 5.
    Lu X, Simon M, Chodaparambil J, Hansen J, Shokat K, Luger K, et al. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol. 2008;15(10):1122–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Reuter G, Spierer P. Position effect variegation and chromatin proteins. Bioessays. 1992;14(9):605–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Ringrose L, Paro R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet. 2004;38:413–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Jenuwein T, Laible G, Dorn R, Reuter G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol Life Sci. 1998;54(1):80–93.PubMedCrossRefGoogle Scholar
  9. 9.
    Rea S, Eisenhaber F, O'Carroll D, Strahl B, Sun Z, Schmid M, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000;406(6796):593–9.PubMedCrossRefGoogle Scholar
  10. 10.
    On T, Xiong X, Pu S, Turinsky A, Gong Y, Emili A, et al. The evolutionary landscape of the chromatin modification machinery reveals lineage specific gains, expansions, and losses. Proteins. 2010;78(9):2075–89.PubMedGoogle Scholar
  11. 11.
    Copeland R, Solomon M, Richon V. Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov. 2009;8(9):724–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Nguyen A, Zhang Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev. 2011;25(13):1345–58.PubMedCrossRefGoogle Scholar
  13. 13.
    Shinkai Y, Tachibana M. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 2011;25(8):781–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem. 2012;81:65–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Wagner E, Carpenter P. Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol. 2012;13(2):115–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Hohenauer T, Moore A. The Prdm family: expanding roles in stem cells and development. Development. 2012;139(13):2267–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Morey L, Helin K. Polycomb group protein-mediated repression of transcription. Trends Biochem Sci. 2010;35(6):323–32.PubMedCrossRefGoogle Scholar
  18. 18.
    Yang H, Mizzen C. The multiple facets of histone H4-lysine 20 methylation. Biochem Cell Biol. 2009;87(1):151–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Strahl B, Ohba R, Cook R, Allis C. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci USA. 1999;96(26):14967–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Black J, Van R, Whetstine J. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell. 2012;48(4):491–507.PubMedCrossRefGoogle Scholar
  21. 21.
    Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol Cell. 2009;36(4):541–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim M, Suh H, Cho E, Buratowski S. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J Biol Chem. 2009;284(39):26421–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Komarnitsky P, Cho E, Buratowski S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 2000;14(19):2452–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Peterlin B, Price D. Controlling the elongation phase of transcription with P-TEFb. Mol Cell. 2006;23(3):297–305.PubMedCrossRefGoogle Scholar
  25. 25.
    Luo Z, Lin C, Shilatifard A. The super elongation complex (SEC) family in transcriptional control. Nat Rev Mol Cell Biol. 2012;13(9):543–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Krogan N, Kim M, Tong A, Golshani A, Cagney G, Canadien V, et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol. 2003;23(12):4207–18.PubMedCrossRefGoogle Scholar
  27. 27.
    Carrozza M, Li B, Florens L, Suganuma T, Swanson S, Lee K, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell. 2005;123(4):581–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Grewal S, Jia S. Heterochromatin revisited. Nat Rev Genet. 2007;8(1):35–46.PubMedCrossRefGoogle Scholar
  29. 29.
    Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Pinheiro I, Margueron R, Shukeir N, Eisold M, Fritzsch C, Richter F, et al. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell. 2012;150(5):948–60.PubMedCrossRefGoogle Scholar
  31. 31.
    Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell. 2007;128(4):735–45.PubMedCrossRefGoogle Scholar
  32. 32.
    Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nat Rev Cancer. 2010;10(5):361–71.PubMedCrossRefGoogle Scholar
  33. 33.
    O'Meara M, Simon J. Inner workings and regulatory inputs that control Polycomb repressive complex 2. Chromosoma. 2012;121(3):221–34.PubMedCrossRefGoogle Scholar
  34. 34.
    Xu C, Bian C, Yang W, Galka M, Ouyang H, Chen C, et al. Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Proc Natl Acad Sci USA. 2010;107(45):19266–71.PubMedCrossRefGoogle Scholar
  35. 35.
    Ahn S, Keogh M, Buratowski S. Ctk1 promotes dissociation of basal transcription factors from elongating RNA polymerase II. EMBO J. 2009;28(3):205–12.PubMedCrossRefGoogle Scholar
  36. 36.
    Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell. 2004;15(1):57–67.PubMedCrossRefGoogle Scholar
  37. 37.
    Shen X, Liu Y, Hsu Y, Fujiwara Y, Kim J, Mao X, et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell. 2008;32(4):491–502.PubMedCrossRefGoogle Scholar
  38. 38.
    Ezhkova E, Lien W, Stokes N, Pasolli H, Silva J, Fuchs E, et al. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 2011;25(5):485–98.PubMedCrossRefGoogle Scholar
  39. 39.
    Mousavi K, Zare H, Wang A, Sartorelli V. Polycomb protein Ezh1 promotes RNA polymerase II elongation. Mol Cell. 2012;45(2):255–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Cosgrove M, Patel A. Mixed lineage leukemia: a structure-function perspective of the MLL1 protein. FEBS J. 2010;277(8):1832–42.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee J, Skalnik D. Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol Cell Biol. 2008;28(2):609–18.PubMedCrossRefGoogle Scholar
  42. 42.
    Clouaire T, Webb S, Skene P, Illingworth R, Kerr A, Andrews R, et al. Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev. 2012;26(15):1714–28.PubMedCrossRefGoogle Scholar
  43. 43.
    Hughes C, Rozenblatt-Rosen O, Milne T, Copeland T, Levine S, Lee J, et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell. 2004;13(4):587–97.PubMedCrossRefGoogle Scholar
  44. 44.
    Agger K, Cloos P, Christensen J, Pasini D, Rose S, Rappsilber J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449(7163):731–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Marschalek R. Mechanisms of leukemogenesis by MLL fusion proteins. Br J Haematol. 2011;152(2):141–54.PubMedCrossRefGoogle Scholar
  46. 46.
    Smith E, Lin C, Shilatifard A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 2011;25(7):661–72.PubMedCrossRefGoogle Scholar
  47. 47.
    Nguyen A, Taranova O, He J, Zhang Y. DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood. 2011;117(25):6912–22.PubMedCrossRefGoogle Scholar
  48. 48.
    Bernt K, Zhu N, Sinha A, Vempati S, Faber J, Krivtsov A, et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell. 2011;20(1):66–78.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee J. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal S, et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science. 2004;303(5658):672–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Bühler M, Verdel A, Moazed D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell. 2006;125(5):873–86.PubMedCrossRefGoogle Scholar
  52. 52.
    Kim D, Villeneuve L, Morris K, Rossi J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol. 2006;13(9):793–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Jeon Y, Lee J. YY1 tethers Xist RNA to the inactive X nucleation center. Cell. 2011;146(1):119–33.PubMedCrossRefGoogle Scholar
  54. 54.
    Aguilo F, Zhou M, Walsh M. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res. 2011;71(16):5365–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Tsai M, Manor O, Wan Y, Mosammaparast N, Wang J, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang K, Yang Y, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472(7341):120–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Orom U, Shiekhattar R. Noncoding RNAs and enhancers: complications of a long-distance relationship. Trends Genet. 2011;27(10):433–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Kanhere A, Viiri K, Araújo C, Rasaiyaah J, Bouwman R, Whyte W, et al. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol Cell. 2010;38(5):675–88.PubMedCrossRefGoogle Scholar
  59. 59.
    Xu K, Wu Z, Groner A, He H, Cai C, Lis R, et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science. 2012;338(6113):1465–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Chaturvedi C, Somasundaram B, Singh K, Carpenedo R, Stanford W, Dilworth F, et al. Maintenance of gene silencing by the coordinate action of the H3K9 methyltransferase G9a/KMT1C and the H3K4 demethylase Jarid1a/KDM5A. Proc Natl Acad Sci USA. 2012;109(46):18845–50.PubMedCrossRefGoogle Scholar
  61. 61.
    Shankar S, Bahirvani A, Rao V, Bharathy N, Ow J, Taneja R, et al. G9a, a multipotent regulator of gene expression. Epigenetics. 2013;8(1):16–22.PubMedCrossRefGoogle Scholar
  62. 62.
    Bittencourt D, Wu D, Jeong K, Gerke D, Herviou L, Ianculescu I, et al. G9a functions as a molecular scaffold for assembly of transcriptional coactivators on a subset of glucocorticoid receptor target genes. Proc Natl Acad Sci USA. 2012;109(48):19673–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol. 2006;7(7):540–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Avilion A, Nicolis S, Pevny L, Perez L, Vivian N, Lovell-Badge R, et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17(1):126–40.PubMedCrossRefGoogle Scholar
  65. 65.
    Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen A, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol. 2008;26(7):795–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, et al. Nanog safeguards pluripotency and mediates germline development. Nature. 2007;450(7173):1230–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113(5):643–55.PubMedCrossRefGoogle Scholar
  68. 68.
    Dejosez M, Krumenacker J, Zitur L, Passeri M, Chu L, Songyang Z, et al. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell. 2008;133(7):1162–74.PubMedCrossRefGoogle Scholar
  69. 69.
    Boyer L, Lee T, Cole M, Johnstone S, Levine S, Zucker J, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122(6):947–56.PubMedCrossRefGoogle Scholar
  70. 70.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRefGoogle Scholar
  71. 71.
    Knoepfler P, Zhang X, Cheng P, Gafken P, McMahon S, Eisenman R, et al. Myc influences global chromatin structure. EMBO J. 2006;25(12):2723–34.PubMedCrossRefGoogle Scholar
  72. 72.
    Loh Y, Wu Q, Chew J, Vega V, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38(4):431–40.PubMedCrossRefGoogle Scholar
  73. 73.
    Loh Y, Zhang W, Chen X, George J, Ng H. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 2007;21(20):2545–57.PubMedCrossRefGoogle Scholar
  74. 74.
    Dinger M, Amaral P, Mercer T, Pang K, Bruce S, Gardiner B, et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 2008;18(9):1433–45.PubMedCrossRefGoogle Scholar
  75. 75.
    Khalil A, Guttman M, Huarte M, Garber M, Raj A, Rivea M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009;106(28):11667–72.PubMedCrossRefGoogle Scholar
  76. 76.
    Guttman M, Donaghey J, Carey B, Garber M, Grenier J, Munson G, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300.PubMedCrossRefGoogle Scholar
  77. 77.
    Bernstein B, Mikkelsen T, Xie X, Kamal M, Huebert D, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26.PubMedCrossRefGoogle Scholar
  78. 78.
    Pasini D, Hansen K, Christensen J, Agger K, Cloos P, Helin K, et al. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev. 2008;22(10):1345–55.PubMedCrossRefGoogle Scholar
  79. 79.
    Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol. 2006;8(2):188–94.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jonathan B. Olsen
    • 1
  • Jack Greenblatt
    • 2
  • Andrew Emili
    • 3
  1. 1.Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
  2. 2.Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
  3. 3.Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical ResearchUniversity of TorontoTorontoCanada

Personalised recommendations