Skip to main content

Curvature of the Bergman Metric

  • Chapter
  • First Online:
Geometric Analysis of the Bergman Kernel and Metric

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 268))

  • 3862 Accesses

Abstract

We begin with a little introductory material on the scaling method. Then we use these ideas to discuss Klembeck’s theorem about the boundary asymptotics of the curvature of the Bergman metric on a strictly pseudoconvex domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some geometric contexts this technique is also known as the “method of flattening.” We thank M. Gromov for this comment.

Bibliography

  1. R. Adams, Sobolev Spaces, Academic Press, 1975.

    Google Scholar 

  2. P. Ahern, M. Flores, and W. Rudin, An invariant volume-mean-value property, Jour. Functional Analysis 11(1993), 380–397.

    MathSciNet  Google Scholar 

  3. L. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, New York, 1979.

    Google Scholar 

  4. N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc. 68(1950), 337–404.

    MathSciNet  MATH  Google Scholar 

  5. T. N. Bailey, M. G. Eastwood, and C. R. Graham, Invariant theory for conformal and CR geometry, Annals of Math. 139(1994), 491–552.

    MathSciNet  MATH  Google Scholar 

  6. D. Barrett, Irregularity of the Bergman projection on a smooth bounded domain in \({\mathbb{C}}^{2},\) Annals of Math. 119(1984), 431–436.

    Google Scholar 

  7. D. Barrett, The behavior of the Bergman projection on the Diederich–Fornaess worm, Acta Math., 168(1992), 1–10.

    MathSciNet  MATH  Google Scholar 

  8. D. Barrett, Regularity of the Bergman projection and local geometry of domains, Duke Math. Jour. 53(1986), 333–343.

    MATH  Google Scholar 

  9. D. Barrett, Behavior of the Bergman projection on the Diederich–Fornæss worm, Acta Math. 168(1992), 1–10.

    MathSciNet  MATH  Google Scholar 

  10. E. Bedford and P. Federbush, Pluriharmonic boundary values, Tohoku Math. Jour. 26(1974), 505–511.

    MathSciNet  MATH  Google Scholar 

  11. E. Bedford and J. E. Fornæss, A construction of peak functions on weakly pseudoconvex domains, Ann. Math. 107(1978), 555–568.

    MATH  Google Scholar 

  12. E. Bedford and J. E. Fornæss, Counterexamples to regularity for the complex Monge–Ampère equation, Invent. Math. 50 (1978/79), 129–134.

    Google Scholar 

  13. S. Bell, Biholomorphic mappings and the \(\overline{\partial }\) problem, Ann. Math., 114(1981), 103–113.

    MATH  Google Scholar 

  14. S. Bell, Local boundary behavior of proper holomorphic mappings, Proc. Sympos. Pure Math, vol. 41, American Math. Soc., Providence R.I., 1984, 1–7.

    Google Scholar 

  15. S. Bell, Differentiability of the Bergman kernel and pseudo-local estimates, Math. Z. 192(1986), 467–472.

    MathSciNet  MATH  Google Scholar 

  16. S. Bell and H. Boas, Regularity of the Bergman projection in weakly pseudoconvex domains, Math. Annalen 257(1981), 23–30.

    MathSciNet  MATH  Google Scholar 

  17. S. Bell and D. Catlin, Proper holomorphic mappings extend smoothly to the boundary, Bull. Amer. Math. Soc. (N.S.) 7(1982), 269–272.

    Google Scholar 

  18. S. Bell and S. G. Krantz, Smoothness to the boundary of conformal maps, Rocky Mt. Jour. Math. 17(1987), 23–40.

    MathSciNet  MATH  Google Scholar 

  19. S. Bell and E. Ligocka, A simplification and extension of Fefferman’s theorem on biholomorphic mappings, Invent. Math. 57(1980), 283–289.

    MathSciNet  MATH  Google Scholar 

  20. F. A. Berezin, Quantization in complex symmetric spaces, Math. USSR Izvestia 9(1975), 341–379.

    Google Scholar 

  21. S. Bergman, Über die Entwicklung der harmonischen Funktionen der Ebene und des Raumes nach Orthogonal funktionen, Math. Annalen 86(1922), 238–271.

    Google Scholar 

  22. S. Bergman, The Kernel Function and Conformal Mapping, Am. Math. Soc., Providence, RI, 1970.

    MATH  Google Scholar 

  23. S. Bergman and M. Schiffer, Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press, New York, 1953.

    MATH  Google Scholar 

  24. B. Berndtsson, P. Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z. 235 (2000), 1–10.

    Google Scholar 

  25. L. Bers, Introduction to Several Complex Variables, New York Univ. Press, New York, 1964.

    Google Scholar 

  26. B. E. Blank and S. G. Krantz, Calculus, Key Press, Emeryville, CA, 2006.

    Google Scholar 

  27. Z. Blocki and P. Pflug, Hyperconvexity and Bergman completeness, Nagoya Math. J. 151(1998), 221–225.

    MathSciNet  MATH  Google Scholar 

  28. T. Bloom and I. Graham, A geometric characterization of points of type m on real submanifolds of \({\mathbb{C}}^{n},\) J. Diff. Geom. 12(1977), 171–182.

    Google Scholar 

  29. H. Boas, Counterexample to the Lu Qi-Keng conjecture, Proc. Am. Math. Soc. 97(1986), 374–375.

    MathSciNet  MATH  Google Scholar 

  30. H. Boas, The Lu Qi-Keng conjecture fails generically, Proc. Amer. Math. Soc. 124(1996), 2021–2027.

    MathSciNet  MATH  Google Scholar 

  31. H. Boas and E. Straube, Sobolev estimates for the \(\overline{\partial }\)-Neumann operator on domains in \({\mathbb{C}}^{n}\) admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), 81–88.

    Google Scholar 

  32. H. Boas and E. Straube, Equivalence of regularity for the Bergman projection and the \(\overline{\partial }\)-Neumann operator, Manuscripta Math. 67(1990), 25–33.

    MathSciNet  MATH  Google Scholar 

  33. H. Boas, S. G. Krantz, and M. M. Peloso, unpublished.

    Google Scholar 

  34. S. Bochner, Orthogonal systems of analytic functions, Math. Z. 14(1922), 180–207.

    MathSciNet  MATH  Google Scholar 

  35. L. Boutet de Monvel, Le noyau de Bergman en dimension 2, Séminaire sur les Équations aux Dérivées Partielles 1987–1988, Exp. no. XXII, École Polytechnique Palaiseau, 1988, p. 13.

    Google Scholar 

  36. L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et Szegő, Soc. Mat. de France Asterisque 34–35(1976), 123–164.

    Google Scholar 

  37. H. J. Bremermann, Holomorphic continuation of the kernel function and the Bergman metric in several complex variables, Lectures on Functions of a Complex Variable, Michigan, 1955, 349–383.

    Google Scholar 

  38. L. Bungart, Holomorphic functions with values in locally convex spaces and applications to integral formulas, Trans. Am. Math. Soc. 111(1964), 317–344.

    MathSciNet  MATH  Google Scholar 

  39. D. Burns, S. Shnider, R. O. Wells, On deformations of strictly pseudoconvex domains, Invent. Math. 46(1978), 237–253.

    MathSciNet  MATH  Google Scholar 

  40. L. Caffarelli, J. J. Kohn, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math. 38(1985), 209–252.

    Google Scholar 

  41. L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, Princeton, NJ, 1967.

    MATH  Google Scholar 

  42. G. Carrier, M. Crook, and C. Pearson, Functions of a Complex Variable, McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  43. D. Catlin, Necessary conditions for subellipticity of the \(\overline{\partial }-\)Neumann problem, Ann. Math. 117(1983), 147–172.

    MathSciNet  MATH  Google Scholar 

  44. D. Catlin, Subelliptic estimates for the \(\overline{\partial }\)Neumann problem, Ann. Math. 126(1987), 131–192.

    MathSciNet  MATH  Google Scholar 

  45. D. Catlin, Boundary behavior of holomorphic functions on pseudoconvex domains, J. Differential Geom. 15(1980), 605–625.

    MathSciNet  MATH  Google Scholar 

  46. D.-C. Chang, A. Nagel, and E. M. Stein, Estimates for the \(\overline{\partial }\)-Neumann problem in pseudoconvex domains of finite type in \({\mathbb{C}}^{2}\), Acta Math. 169(1992), 153–228.

    MathSciNet  MATH  Google Scholar 

  47. S.-C. Chen, A counterexample to the differentiability of the Bergman kernel function, Proc. AMS 124(1996), 1807–1810.

    MATH  Google Scholar 

  48. B.-Y. Chen and S. Fu, Comparison of the Bergman and Szegö kernels, Advances in Math. 228(2011), 2366–2384.

    MathSciNet  MATH  Google Scholar 

  49. S.-C. Chen and M. C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP Studies in Advanced Mathematics, 19. American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001.

    Google Scholar 

  50. S.-Y. Cheng, Open problems, Conference on Nonlinear Problems in Geometry Held in Katata, September, 1979, Tohoku University, Dept. of Mathematics, Sendai, 1979, p. 2.

    Google Scholar 

  51. S. S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133(1974), 219–271.

    MathSciNet  Google Scholar 

  52. M. Christ, Global C irregularity of the \(\overline{\partial }\)?–Neumann problem for worm domains, J. Amer. Math. Soc. 9(1996), 1171–1185.

    MathSciNet  MATH  Google Scholar 

  53. M. Christ, Remarks on global irregularity in the \(\overline{\partial }\)-Neumann problem, Several complex variables (Berkeley, CA, 1995–1996), 161–198, Math. Sci. Res. Inst. Publ. 37, Cambridge Univ. Press, Cambridge, 1999.

    Google Scholar 

  54. E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

    MATH  Google Scholar 

  55. R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes, Springer Lecture Notes vol. 242, Springer Verlag, Berlin, 1971.

    Google Scholar 

  56. R. Courant and D. Hilbert, Methods of Mathematical Physics, 2nd ed., Interscience, New York, 1966.

    Google Scholar 

  57. J. P. D’Angelo, Real hypersurfaces, orders of contact, and applications, Annals of Math. 115(1982), 615–637.

    MathSciNet  MATH  Google Scholar 

  58. J. P. D’Angelo, Intersection theory and the \(\overline{\partial }\)- Neumann problem, Proc. Symp. Pure Math. 41(1984), 51–58.

    MathSciNet  Google Scholar 

  59. J. P. D’Angelo, Finite type conditions for real hypersurfaces in \({\mathbb{C}}^{n},\) in Complex Analysis Seminar, Springer Lecture Notes vol. 1268, Springer Verlag, 1987, 83–102.

    Google Scholar 

  60. J. P. D’Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, Boca Raton, FL, 1993.

    MATH  Google Scholar 

  61. K. Diederich, Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudo-konvexen Gebieten, Math. Ann. 187(1970), 9–36.

    MathSciNet  MATH  Google Scholar 

  62. K. Diederich, Über die 1. and 2. Ableitungen der Bergmanschen Kernfunktion und ihr Randverhalten, Math. Ann. 203(1973), 129–170.

    Google Scholar 

  63. K. Diederich and J. E. Fornæss, Pseudoconvex domains: An example with nontrivial Nebenhülle, Math. Ann. 225(1977), 275–292.

    MathSciNet  MATH  Google Scholar 

  64. K. Diederich and J. E. Fornæss, Pseudoconvex domains with real-analytic boundary, Annals of Math. 107(1978), 371–384.

    MATH  Google Scholar 

  65. K. Diederich and J. E. Fornæss, Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129–141.

    Google Scholar 

  66. K. Diederich and J. E. Fornæss, Smooth extendability of proper holomorphic mappings, Bull. Amer. Math. Soc. (N.S.) 7(1982), 264–268.

    Google Scholar 

  67. Ebin, D. G., On the space of Riemannian metrics, Bull. Amer. Math. Soc. 74(1968), 1001–1003.

    MathSciNet  MATH  Google Scholar 

  68. Ebin, D. G., The manifold of Riemannian metrics, 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), pp. 11–40, Amer. Math. Soc., Providence, R.I.

    Google Scholar 

  69. M. Engliš, Functions invariant under the Berezin transform, J. Funct. Anal. 121(1994), 233–254.

    MathSciNet  MATH  Google Scholar 

  70. M. Engliš, Asymptotics of the Berezin transform and quantization on planar domains, Duke Math. J. 79(1995), 57–76.

    MathSciNet  MATH  Google Scholar 

  71. B. Epstein, Orthogonal Families of Functions, Macmillan, New York, 1965.

    MATH  Google Scholar 

  72. A. Erdelyi, et al, Higher Transcendental Functions, McGraw-Hill, New York, 1953.

    Google Scholar 

  73. H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.

    MATH  Google Scholar 

  74. C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26(1974), 1–65.

    MathSciNet  MATH  Google Scholar 

  75. C. Fefferman, Parabolic invariant theory in complex analysis, Adv. Math. 31(1979), 131–262.

    MathSciNet  MATH  Google Scholar 

  76. G. B. Folland and J. J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Princeton University Press, Princeton, NJ, 1972.

    MATH  Google Scholar 

  77. G. B. Folland, Spherical harmonic expansion of the Poisson–Szegő kernel for the ball, Proc. Am. Math. Soc. 47(1975), 401–408.

    MathSciNet  MATH  Google Scholar 

  78. J. E. Fornæss and J. McNeal, A construction of peak functions on some finite type domains. Amer. J. Math. 116(1994), no. 3, 737–755.

    Google Scholar 

  79. F. Forstneric, An elementary proof of Fefferman’s theorem, Expositiones Math., 10(1992), 136–149.

    MathSciNet  Google Scholar 

  80. B. Fridman, A universal exhausting domain, Proc. Am. Math. Soc. 98(1986), 267–270.

    MathSciNet  MATH  Google Scholar 

  81. S. Fu and B. Wong, On strictly pseudoconvex domains with Kähler–Einstein Bergman metrics, Math. Res. Letters 4(1997), 697–703.

    MathSciNet  MATH  Google Scholar 

  82. T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969.

    MATH  Google Scholar 

  83. T. Gamelin and N. Sibony, Subharmonicity for uniform algebras. J. Funct. Anal. 35 (1980), 64–108.

    MathSciNet  MATH  Google Scholar 

  84. J. B. Garnett, Analytic Capacity and Measure, Lecture Notes in Math. 297, Springer, New York, 1972.

    Google Scholar 

  85. P. R. Garabedian, A Green’s function in the theory of functions of several complex variables, Ann. of Math. 55(1952). 19–33.

    MathSciNet  MATH  Google Scholar 

  86. J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.

    MATH  Google Scholar 

  87. A. Gleason, The abstract theorem of Cauchy-Weil, Pac. J. Math. 12(1962), 511–525.

    MathSciNet  MATH  Google Scholar 

  88. Goluzin, Geometric Theory of Functions of a Complex Variable, American Mathematical Society, Providence, 1969.

    Google Scholar 

  89. C. R. Graham, The Dirichlet problem for the Bergman Laplacian I, Comm. Partial Diff. Eqs. 8(1983), 433–476.

    MATH  Google Scholar 

  90. C. R. Graham, The Dirichlet problem for the Bergman Laplacian II, Comm. Partial Diff. Eqs. 8(1983), 563–641.

    MATH  Google Scholar 

  91. C. R. Graham, Scalar boundary invariants and the Bergman kernel, Complex analysis, II (College Park, Md., 1985–86), 108–135, Lecture Notes in Math. 1276, Springer, Berlin, 1987.

    Google Scholar 

  92. C. R. Graham and J. M. Lee, Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Jour. Math. 57(1988), 697–720.

    MathSciNet  MATH  Google Scholar 

  93. I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in \({\mathbb{C}}^{n}\) with smooth boundary, Trans. Am. Math. Soc. 207(1975), 219–240.

    MATH  Google Scholar 

  94. H. Grauert and I. Lieb, Das Ramirezsche Integral und die Gleichung \(\overline{\partial }u =\alpha\) im Bereich der beschränkten Formen, Rice University Studies 56(1970), 29–50.

    MathSciNet  MATH  Google Scholar 

  95. R. E. Greene, K.-T. Kim, and S. G. Krantz, The Geometry of Complex Domains, Birkhäuser Publishing, Boston, MA, 2011.

    MATH  Google Scholar 

  96. R. E. Greene and S. G. Krantz, Stability properties of the Bergman kernel and curvature properties of bounded domains, Recent Progress in Several Complex Variables, Princeton University Press, Princeton, 1982.

    Google Scholar 

  97. R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the \(\overline{\partial }\) equation, and stability of the Bergman kernel, Adv. Math. 43(1982), 1–86.

    MathSciNet  MATH  Google Scholar 

  98. R. E. Greene and S. G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Annalen 261(1982), 425–446.

    MathSciNet  MATH  Google Scholar 

  99. R. E. Greene and S. G. Krantz, The stability of the Bergman kernel and the geometry of the Bergman metric, Bull. Am. Math. Soc. 4(1981), 111–115.

    MathSciNet  MATH  Google Scholar 

  100. R. E. Greene and S. G. Krantz, Stability of the Carathéodory and Kobayashi metrics and applications to biholomorphic mappings, Proc. Symp. in Pure Math., Vol. 41 (1984), 77–93.

    MathSciNet  Google Scholar 

  101. R. E. Greene and S. G. Krantz, Normal families and the semicontinuity of isometry and automorphism groups, Math. Zeitschrift 190(1985), 455–467.

    MathSciNet  MATH  Google Scholar 

  102. R. E. Greene and S. G. Krantz, Characterizations of certain weakly pseudo-convex domains with non-compact automorphism groups, in Complex Analysis Seminar, Springer Lecture Notes 1268(1987), 121–157.

    MathSciNet  Google Scholar 

  103. R. E. Greene and S. G. Krantz, Characterization of complex manifolds by the isotropy subgroups of their automorphism groups, Indiana Univ. Math. J. 34(1985), 865–879.

    MathSciNet  MATH  Google Scholar 

  104. R. E. Greene and S. G. Krantz, Biholomorphic self-maps of domains, Complex Analysis II (C. Berenstein, ed.), Springer Lecture Notes, vol. 1276, 1987, 136–207.

    Google Scholar 

  105. R. E. Greene and S. G. Krantz, Techniques for Studying the automorphism Groups of Weakly Pseudoconvex Domains, Several Complex Variables (Stockholm, 1987/1988), 389–410, Math. Notes, 38, Princeton Univ. Press, Princeton, NJ, 1993.

    Google Scholar 

  106. R. E. Greene and S. G. Krantz, Invariants of Bergman geometry and results concerning the automorphism groups of domains in \({\mathbb{C}}^{n},\) Proceedings of the 1989 Conference in Cetraro (D. Struppa, ed.), to appear.

    Google Scholar 

  107. R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable, 3rd ed., American Mathematical Society, Providence, RI, 2006.

    Google Scholar 

  108. R. Harvey and J. Polking, Fundamental solutions in complex analysis. I. The Cauchy-Riemann operator, Duke Math. J. 46(1979), 253–300.

    Google Scholar 

  109. R. Harvey and J. Polking, Fundamental solutions in complex analysis. II. The induced Cauchy-Riemann operator, Duke Math. J. 46(1979), 301–340.

    Google Scholar 

  110. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.

    MATH  Google Scholar 

  111. G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sb. 78(120)(1969), 611–632.

    MathSciNet  Google Scholar 

  112. E. Hille, Analytic Function Theory, 2nd ed., Ginn and Co., Boston, 1973.

    Google Scholar 

  113. K. Hirachi, The second variation of the Bergman kernel of ellipsoids, Osaka J. Math. 30(1993), 457–473.

    MathSciNet  MATH  Google Scholar 

  114. K. Hirachi, Scalar pseudo-Hermitian invariants and the Szegő kernel on three-dimensional CR manifolds, Complex Geometry (Osaka, 1990), Lecture Notes Pure Appl. Math., v. 143, Marcel Dekker, New York, 1993, 67–76.

    Google Scholar 

  115. K. Hirachi, Construction of boundary invariants and the logarithmic singularity in the Bergman kernel, Annals of Math. 151(2000), 151–190.

    MathSciNet  MATH  Google Scholar 

  116. M. Hirsch, Differential Topology, Springer-Verlag, New York, 1976.

    MATH  Google Scholar 

  117. L. Hörmander, L 2 estimates and existence theorems for the \(\overline{\partial }\) operator, Acta Math. 113(1965), 89–152.

    MathSciNet  MATH  Google Scholar 

  118. L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, New York, 1963.

    MATH  Google Scholar 

  119. L. Hörmander, Pseudo-differential operators and non-elliptic boundary problems, Ann. Math. 83(1966), 129–209.

    MATH  Google Scholar 

  120. L. Hörmander, “Fourier integral operators,” The Analysis of Linear Partial Differential Operators IV, Reprint of the 1994 ed., Springer, Berlin, Heidelberg, New York, 2009.

    Google Scholar 

  121. L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, American Mathematical Society, Providence, 1963.

    Google Scholar 

  122. A. Isaev and S. G. Krantz, Domains with non-compact automorphism group: A Survey, Advances in Math. 146 (1999), 1–38.

    Google Scholar 

  123. S. Jakobsson, Weighted Bergman kernels and biharmonic Green functions, Ph.D. thesis, Lunds Universitet, 2000, 134 pages.

    Google Scholar 

  124. Y. Katznelson, Introduction to Harmonic Analysis, John Wiley and Sons, New York, 1968.

    MATH  Google Scholar 

  125. O. Kellogg, Foundations of Potential Theory, Dover, New York, 1953.

    MATH  Google Scholar 

  126. N. Kerzman, Hölder and L p estimates for solutions of \(\overline{\partial }u = f\) on strongly pseudoconvex domains, Comm. Pure Appl. Math. 24(1971), 301–380.

    MathSciNet  Google Scholar 

  127. N. Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195(1972), 149–158.

    Google Scholar 

  128. N. Kerzman, A Monge–Ampre equation in complex analysis. Several Complex Variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975), pp. 161–167. Amer. Math. Soc., Providence, R.I., 1977.

    Google Scholar 

  129. Y. W. Kim, Semicontinuity of compact group actions on com- pact dierentiable manifolds, Arch. Math. 49(1987), 450–455.

    MATH  Google Scholar 

  130. C. Kiselman, A study of the Bergman projection in certain Hartogs domains, Proc. Symposia Pure Math., vol. 52 (E. Bedford, J. D’Angelo, R. Greene, and S. Krantz eds.), American Mathematical Society, Providence, 1991.

    Google Scholar 

  131. P. Klembeck, Kähler metrics of negative curvature, the Bergman metric near the boundary and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27(1978), 275–282.

    MathSciNet  MATH  Google Scholar 

  132. S. Kobayashi, Geometry of bounded domains, Trans. AMS 92(1959), 267–290.

    MATH  Google Scholar 

  133. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York, 1970.

    MATH  Google Scholar 

  134. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. I and II, Interscience, New York, 1963, 1969.

    Google Scholar 

  135. J. J. Kohn, Quantitative estimates for global regularity, Analysis and geometry in several complex variables (Katata, 1997), 97–128, Trends Math., Birkhäuser Boston, Boston, MA, 1999.

    Google Scholar 

  136. J. J. Kohn, Boundary behavior of \(\overline{\partial }\) on weakly pseudoconvex manifolds of dimension two, J. Diff. Geom. 6(1972), 523–542.

    MathSciNet  MATH  Google Scholar 

  137. A. Koranyi, Harmonic functions on Hermitian hyperbolic space, Trans. A. M. S. 135(1969), 507–516.

    MathSciNet  MATH  Google Scholar 

  138. A. Koranyi, Boundary behavior of Poisson integrals on symmetric spaces, Trans. A.M.S. 140(1969), 393–409.

    Google Scholar 

  139. S. G. Krantz, Function Theory of Several Complex Variables, 2nd ed., American Mathematical Society, Providence, RI, 2001.

    Google Scholar 

  140. S. G. Krantz, On a construction of L. Hua for positive reproducing kernels, Michigan Journal of Mathematics 59(2010), 211–230.

    Google Scholar 

  141. S. G. Krantz, Boundary decomposition of the Bergman kernel, Rocky Mountain Journal of Math., to appear.

    Google Scholar 

  142. S. G. Krantz, Partial Differential Equations and Complex Analysis, CRC Press, Boca Raton, FL, 1992.

    MATH  Google Scholar 

  143. S. G. Krantz, Cornerstones of Geometric Function Theory: Explorations in Complex Analysis, Birkhäuser Publishing, Boston, 2006.

    Google Scholar 

  144. S. G. Krantz, Invariant metrics and the boundary behavior of holomorphic functions on domains in \({\mathbb{C}}^{n}\), Jour. Geometric. Anal. 1(1991), 71–98.

    MathSciNet  MATH  Google Scholar 

  145. S. G. Krantz, Calculation and estimation of the Poisson kernel, J. Math. Anal. Appl. 302(2005)143–148.

    MathSciNet  MATH  Google Scholar 

  146. S. G. Krantz, A new proof and a generalization of Ramadanov’s theorem, Complex Variables and Elliptic Eq. 51(2006), 1125–1128.

    MathSciNet  MATH  Google Scholar 

  147. S. G. Krantz, Complex Analysis: The Geometric Viewpoint, 2nd ed., Mathematical Association of America, Washington, D.C., 2004.

    Google Scholar 

  148. S. G. Krantz, Canonical kernels versus constructible kernels, preprint.

    Google Scholar 

  149. S. G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Expositiones Math. 3(1983), 193–260.

    MathSciNet  Google Scholar 

  150. S. G. Krantz, Characterizations of smooth domains in \(\mathbb{C}\) by their biholomorphic self maps, Am. Math. Monthly 90(1983), 555–557.

    MathSciNet  MATH  Google Scholar 

  151. S. G. Krantz, A Guide to Functional Analysis, Mathematical Association of America, Washington, D.C., 2013, to appear.

    Google Scholar 

  152. S. G. Krantz, A direct connection between the Bergman and Szegő projections, Complex Analysis and Operator Theory, to appear.

    Google Scholar 

  153. S. G. Krantz and H. R. Parks, The Geometry of Domains in Space, Birkhäuser Publishing, Boston, MA, 1996.

    Google Scholar 

  154. S. G. Krantz and H. R. Parks, The Implicit Function Theorem, Birkhäuser, Boston, 2002.

    MATH  Google Scholar 

  155. S. G. Krantz and M. M. Peloso, The Bergman kernel and projection on non-smooth worm domains, Houston J. Math. 34 (2008), 9.3.-950.

    Google Scholar 

  156. S. G. Krantz and M. M. Peloso, Analysis and geometry on worm domains, J. Geom. Anal. 18(2008), 478–510.

    MathSciNet  MATH  Google Scholar 

  157. L. Lempert, La metrique Kobayashi et las representation des domains sur la boule, Bull. Soc. Math. France 109(1981), 427–474.

    MathSciNet  MATH  Google Scholar 

  158. S.-Y. Li, S-Y. Li, Neumann problems for complex Monge–Ampère equations, Indiana University J. of Math, 43(1994), 1099–1122.

    Google Scholar 

  159. E. Ligocka, The Sobolev spaces of harmonic functions, Studia Math. 54(1986). 79–87.

    MathSciNet  Google Scholar 

  160. E. Ligocka, Remarks on the Bergman kernel function of a worm domain, Studia Mathematica 130(1998), 109–113.

    MathSciNet  MATH  Google Scholar 

  161. B.-L. Min, Domains with prescribed automorphism group, J. Geom. Anal. 19 (2009), 911–928.

    MathSciNet  MATH  Google Scholar 

  162. R. Narasimhan, Several Complex Variables, University of Chicago Press, Chicago, 1971.

    MATH  Google Scholar 

  163. L. Nirenberg, S. Webster, and P. Yang, Local boundary regularity of holomorphic mappings. Comm. Pure Appl. Math. 33(1980), 305–338.

    MathSciNet  MATH  Google Scholar 

  164. T. Ohsawa, A remark on the completeness of the Bergman metric, Proc. Japan Acad. Ser. A Math. Sci., 57(1981), 238–240.

    Google Scholar 

  165. Painlevé, Sur les lignes singulières des functions analytiques, Thèse, Gauthier-Villars, Paris, 1887.

    Google Scholar 

  166. J. Peetre, The Berezin transform and Ha-Plitz operators, J. Operator Theory 24(1990), 165–186.

    MathSciNet  MATH  Google Scholar 

  167. P. Petersen, Riemannian Geometry, Springer, New York, 2009.

    Google Scholar 

  168. D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms, Acta Math. 157(1986), 99–157.

    MathSciNet  MATH  Google Scholar 

  169. D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I. Acta Math. 157(1986), 99–157.

    Google Scholar 

  170. D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. II. Invent. Math. 86(1986), 75–113.

    Google Scholar 

  171. S. Pinchuk, The scaling method and holomorphic mappings, Several Complex Variables and Complex Ggeometry, Part 1 (Santa Cruz, CA, 1989), 151–161, Proc. Sympos. Pure Math., 52, Part 1, Amer. Math. Soc., Providence, RI, 1991.

    Google Scholar 

  172. S. Pinchuk and S. V. Hasanov, Asymptotically holomorphic functions (Russian), Mat. Sb. 134(176) (1987), 546–555.

    Google Scholar 

  173. S. Pinchuk and S. I. Tsyganov, Smoothness of CR-mappings between strictly pseudoconvex hypersurfaces. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 53(1989), 1120–1129, 1136; translation in Math. USSR-Izv. 35(1990), 457–467.

    Google Scholar 

  174. I. Ramadanov, Sur une propriété de la fonction de Bergman. (French) C. R. Acad. Bulgare Sci. 20(1967), 759–762.

    Google Scholar 

  175. I. Ramadanov, A characterization of the balls in \({\mathbb{C}}^{n}\) by means of the Bergman kernel, C. R. Acad. Bulgare Sci. 34(1981), 927–929.

    MathSciNet  MATH  Google Scholar 

  176. R. M. Range, A remark on bounded strictly plurisubharmonic exhaustion functions, Proc. A.M.S. 81(1981), 220–222.

    Google Scholar 

  177. S. Roman, The formula of Faà di Bruno, Am. Math. Monthly 87(1980), 805–809.

    MathSciNet  MATH  Google Scholar 

  178. B. Rodin and S. Warschawski, Estimates of the Riemann mapping function near a boundary point, in Romanian-Finnish Seminar on Complex Analysis, Springer Lecture Notes, vol. 743, 1979, 349–366.

    MathSciNet  Google Scholar 

  179. J.-P. Rosay, Sur une characterization de la boule parmi les domains de \({\mathbb{C}}^{n}\) par son groupe d’automorphismes, Ann. Inst. Four. Grenoble XXIX(1979), 91–97.

    Google Scholar 

  180. P. Rosenthal, On the zeroes of the Bergman function in doubly-connected domains, Proc. Amer. Math. Soc. 21(1969), 33–35.

    MathSciNet  MATH  Google Scholar 

  181. W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, New York, 1976.

    MATH  Google Scholar 

  182. W. Rudin, Function Theory in the Unit Ball of \({\mathbb{C}}^{n}\), Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Springer, Berlin, 1980.

    Google Scholar 

  183. S. Semmes, A generalization of Riemann mappings and geometric structures on a space of domains in \({\mathbb{C}}^{n},\) Memoirs of the American Mathematical Society, 1991.

    Google Scholar 

  184. N. Sibony, A class of hyperbolic manifolds, Ann. of Math. Stud. 100(1981), 357–372.

    MathSciNet  Google Scholar 

  185. Y.-T. Siu, Non Hölder property of Bergman projection of smooth worm domain, Aspects of Mathematics—Algebra, Geometry, and Several Complex Variables, N. Mok (ed.), University of Hong Kong, 1996, 264–304.

    Google Scholar 

  186. M. Skwarczynski, The distance in the theory of pseudo-conformal transformations and the Lu Qi-King conjecture, Proc. A.M.S. 22(1969), 305–310.

    Google Scholar 

  187. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ. 1970.

    MATH  Google Scholar 

  188. E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, Princeton, 1972.

    MATH  Google Scholar 

  189. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Space, Princeton University Press, Princeton, NJ, 1971.

    Google Scholar 

  190. K. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, Belmont, 1981.

    MATH  Google Scholar 

  191. N. Suita and A. Yamada On the Lu Qi-Keng conjecture, Proc. A.M.S. 59(1976), 222–224.

    Google Scholar 

  192. G. Szegő, Über Orthogonalsysteme von Polynomen, Math. Z. 4(1919), 139–151.

    MathSciNet  Google Scholar 

  193. N. Tanaka, On generalized graded Lie algebras and geometric structures, I, J. Math. Soc. Japan 19(1967), 215–254.

    MathSciNet  MATH  Google Scholar 

  194. G. B. Thomas, Calculus, 7th ed., Addison-Wesley, Reading, MA, 1999.

    Google Scholar 

  195. F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. II, Plenum Press, New York 1982.

    Google Scholar 

  196. S. Warschawski, On the boundary behavior of conformal maps, Nagoya Math. J. 30(1967), 83–101.

    MathSciNet  MATH  Google Scholar 

  197. S. Warschawski, On boundary derivatives in conformal mapping, Ann. Acad. Sci. Fenn. Ser. A I no. 420(1968), 22 pp.

    Google Scholar 

  198. S. Warschawski, Hölder continuity at the boundary in conformal maps, J. Math. Mech. 18(1968/9), 423–7.

    Google Scholar 

  199. S. Webster, Biholomorphic mappings and the Bergman kernel off the diagonal, Invent. Math. 51(1979), 155–169.

    MathSciNet  MATH  Google Scholar 

  200. S. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71(1978), 26–28.

    MathSciNet  MATH  Google Scholar 

  201. E. Whittaker and G. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, London, 1935.

    Google Scholar 

  202. J. Wiegerinck, Domains with finite dimensional Bergman space, Math. Z. 187(1984), 559–562.

    MathSciNet  MATH  Google Scholar 

  203. B. Wong, Characterization of the ball in \({\mathbb{C}}^{n}\) by its automorphism group, Invent. Math. 41(1977), 253–257.

    MathSciNet  MATH  Google Scholar 

  204. S.-T. Yau, Problem section, Seminar on Differential Geometry, S.-T. Yau ed., Annals of Math. Studies, vol. 102, Princeton University Press, 1982, 669–706.

    Google Scholar 

  205. K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2005.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

APPENDIX: Scaling in Dimension One

APPENDIX: Scaling in Dimension One

7.1.1 The Scaling of the Unit Disc

Let D be the open unit disc in the complex plane \(\mathbb{C}\). Choose a sequence a j in D satisfying the conditions

$$\displaystyle{0 < a_{j} < a_{j+1} < \cdots < 1,\ \forall j = 1,2,\ldots,}$$

and

$$\displaystyle{\lim _{j\rightarrow \infty }a_{j} = 1.}$$

Consider the sequence of dilations

$$\displaystyle{L_{j}(z) = \frac{1} {1 - a_{j}}(z - 1).}$$

Let us write \(\lambda _{j} = 1 - a_{j}\). Then one sees immediately that

$$\displaystyle\begin{array}{rcl} L_{j}(D)& =& \{\zeta \in \mathbb{C}\mid (1 +\lambda _{j}\zeta )(1 +\lambda _{j}\bar{\zeta }) < 1\} {}\\ & =& \{\zeta \in \mathbb{C}\mid 2\ Re\,\zeta < -\lambda _{j}\vert \zeta {\vert }^{2}\}\,. {}\\ \end{array}$$

It follows that the sequence of sets L j (D) converges to the left half plane \(H =\{\zeta \in \mathbb{C}\mid Re\,\zeta < 0\}\) in the sense that

$$\displaystyle{L_{j}(D) \subset L_{j+1}(D),\ \forall j = 1,2,\ldots,}$$

and

$$\displaystyle{\bigcup _{j=1}^{\infty }L_{ j}(D) = H.}$$

[Compare the concept of convergence in the Hausdorff metric on sets—see [FED].]

Now we combine this simple observation with the fact that there exists the sequence of maps

$$\displaystyle{\varphi _{j}(z) = \frac{z + a_{j}} {1 + a_{j}z}}$$

that are automorphisms of D satisfying \(\varphi _{j}(0) = a_{j}\). Consider the sequence of composite maps

$$\displaystyle{\sigma _{j} \equiv L_{j} \circ \varphi _{j}: D \rightarrow \mathbb{C}.}$$

A direct computation yields that

$$\displaystyle\begin{array}{rcl} L_{j} \circ \varphi _{j}(z)& =& \frac{1} {1 - a_{j}}\left ( \frac{z + a_{j}} {1 + a_{j}z} - 1\right ) {}\\ & =& \frac{z - 1} {1 + a_{j}z}. {}\\ \end{array}$$

Hence, in fact we see that the sequence of holomorphic mappings \(L_{j} \circ \varphi _{j}\) converges uniformly on compact subsets of D to the mapping

$$\displaystyle{\hat{\sigma }(z) = \frac{z - 1} {z + 1}}$$

that is a biholomorphic mapping from the open unit disc D onto the left half plane H. (We have in effect discovered here a means to see the Cayley map by way of scaling.)

The point is that we have exploited the automorphism of the disc to see that the disc is conformally equivalent to a certain canonical domain—namely, the half plane. This result is neither surprising nor insightful. But it is a toy version of the main results that we shall present below.

7.1.2 A Generalization

We now expand the simple observations of the preceding subsection to yield the statement and the proof of the following one-dimensional version of the Wong–Rosay theorem:

Proposition:

Let Ω be a domain in the complex plane \(\mathbb{C}\) admitting a boundary point p such that

  • There exists an open neighborhood U of p in \(\mathbb{C}\) such that \(U \cap \partial \Omega \) is a C 1 curve.

  • There exists a sequence \(\varphi _{j}\) of automorphisms of Ω and a point q ∈ Ω such that

    $$\displaystyle{\lim _{j\rightarrow \infty }\varphi _{j}(q) = p.}$$

Then Ω is biholomorphic to the open unit disc.

See [KRA13] for this theorem. We use this simple result to illustrate the technique of scaling.

In order to be consistent with the remainder of this chapter, we change a bit the notation for the orbit accumulation point and the point whose orbit we are calculating. This will all make sense in context.

Sketch of the Proof: Let \(q_{j} =\varphi _{j}(q)\) for each j. Choose the closest point in the boundary to q j and call it p j . If the closest boundary point p j to q j is not unique, then make a choice. As j tends to infinity, p j converges to p because q j converges to p. Then we select θ j and apply the map \(\rho _{j}(z) \equiv {\mathrm{e}}^{i\theta _{j}}(z - p_{j})\) so that

$$\displaystyle{\rho _{j}(p_{j}) = 0\ \ \mbox{ and }\ \ \rho _{j}(q_{j}) > 0}$$

for each j. Now consider the sequence of mappings

$$\displaystyle{\psi _{j}(z) = \frac{1} {\rho _{j}(q_{j})}\left (\rho _{j} \circ \varphi _{j}(z)\right ).}$$

Notice that \(\psi _{j}(\Omega ) = \frac{1} {\rho (q_{j})}\ \rho _{j}(\Omega )\) for each j. Thus we expect that ψ j (Ω) is almost the right half plane as j becomes very large. At least every ψ j (Ω) is contained in \(\mathbb{C}\setminus \ell\) for some line segment of positive length and for every j. (Note that can be chosen independently of j.) Therefore one can select a subsequence from \(\{\psi _{j}\}\) that converges uniformly on compact subsets of Ω. Let \(\hat{\psi }\) be the limit mapping. Then we expect \(\hat{\psi }: \Omega \rightarrow \mathbb{C}\) to be an injective holomorphic mapping, and furthermore, \(\hat{\psi }(\Omega )\) is equal to the right half plane. Thus we hope to conclude that Ω is biholomorphic to the right half plane, which in turn is biholomorphic to the open unit disc. See Fig. 7.1.

Fig. 7.1
figure 1

The scaling process

This plan actually works, but it is evident that there are several points that need clarification. We shall now present the precise proof, which will show much of the essence of the scaling method.

Rigorous Proof of the Main Result: Keeping the “Plan of the Proof” in mind, we present the precise proof in several steps. Let p ∈ ∂ Ω be as in the hypothesis of the proposition. Write \(D(p,r) =\{ z \in \mathbb{C}\mid \vert z - p\vert < r\}\). Transforming Ω by a conformal mapping z↦e(z − p), we may assume the following with no loss of generality:

  1. (a)

    p = 0

  2. (b)

    \(\Omega \cap D(p,r) =\{ z = x + \mathit{iy}\mid y >\psi (x),\vert z - p\vert < r\}\) and \(\partial \Omega \cap D(p,r) =\{ z\mid y =\psi (x),\vert z - p\vert < r\}\) for a real-valued C 1 function ψ in one real variable satisfying ψ(0) = 0 and ψ ′(0) = 0.

Step 1. The Scaling Map. Notice that the sequence \(\varphi _{j}(q)\) now converges to 0 as j → . For each j, we choose a point p j  ∈ ∂ Ω that is the closest to \(\varphi _{j}(q)\). Since p j also converges to 0, replacing \(\varphi _{j}\) by a subsequence if necessary, we may assume that every p j  ∈ D(p, r ∕ 4). Now, for each j, set

$$\displaystyle{\alpha _{j}(z) = i\ \frac{\vert \varphi _{j}(q) - p_{j}\vert } {\varphi _{j}(q) - p_{j}} \ (z - p_{j}).}$$

Notice that \(\varphi _{j}(q) - p_{j}\) is a positive scalar multiple of the inward unit normal vector to ∂ Ω at p j . Thus \(\frac{\varphi _{j}(q) - p_{j}} {\vert \varphi _{j}(q) - p_{j}\vert }\) converges to the inward unit normal vector to ∂ Ω at 0. This implies that α j in fact converges to the identity map. Consequently, there exist positive constants r 1, r 2 independent of j such that, for each j, there exists a C 1 function ψ j (x) defined for | x |  < r 1 satisfying

$$\displaystyle{\alpha _{j}(z) \cap \left ([-r_{1},r_{1}] \times [-r_{2},r_{2}]\right ) =\{ x + iy\mid \vert x\vert < r_{1},\vert y\vert < r_{2},y >\psi _{j}(x)\}.}$$

Furthermore, for each ε > 0, there exists δ > 0 such that

$$\displaystyle{\psi _{j}(x) <\epsilon \vert x\vert \mbox{ whenever }\vert x\vert <\delta }$$

regardless of j.

Next, let \(\lambda _{j} = \vert \varphi _{j}(q) - p_{j}\vert \) for each j. Consider the dilation map

$$\displaystyle{L_{j}(z) = \frac{z} {\lambda _{j}}.}$$

Then the sequence of holomorphic mappings we want to construct is given by

$$\displaystyle{\psi _{j} \equiv L_{j} \circ \alpha _{j} \circ \varphi _{j}: \Omega \rightarrow \mathbb{C}.}$$

Before starting the next step, we make a few remarks. The automorphism \(\varphi _{j}\) preserves the domain Ω but moves q to \(\varphi _{j}(q)\) so that \(\varphi _{j}(q)\) converges to the origin—recall that we made changes so that p became the origin at the beginning of the proof. Then the affine map α j adjusts Ω so that the direction vector \(\frac{\varphi _{j}(q) - p_{j}} {\vert \varphi _{j}(q) - p_{j}\vert }\) is transformed to a purely imaginary number. The final component L j in the construction simply magnifies the domain α j (Ω), while the map L j itself diverges.

Step 2. Convergence of the ψ j . We shall actually choose a subsequence from {ψ j } that converges uniformly on compact subsets of Ω. Observe first that

$$\displaystyle{\psi _{j}(\Omega ) = L_{j} \circ \alpha _{j} \circ \varphi _{j}(\Omega ) = L_{j} \circ \alpha _{j}(\Omega )}$$

since \(\varphi _{j}(\Omega ) = \Omega \). Choosing a subsequence of ψ j , we may assume that λ j  < 1 for every j. Then, since L j is a simple dilation by a positive number, and since α j (Ω) will miss a line segment

$$\displaystyle{E =\{ -iy\mid 0 \leq y \leq b\}}$$

for some constant b independent of j, we see immediately that

$$\displaystyle{\psi _{j}(\Omega ) \subset \mathbb{C} \setminus E}$$

for every j = 1, 2, . Therefore Montel’s theorem implies that every subsequence of {ψ j } admits a subsequence, which we again (by an abuse of notation) denote by ψ j , that converges uniformly on compact subsets of Ω. Denote by \(\hat{\psi }\) the limit of the sequence ψ j .

Step 3. Analysis of \(\hat{\psi }(\Omega )\). We want to establish that

$$\displaystyle{\hat{\psi }(\Omega ) = \mathcal{U},}$$

where \(\mathcal{U}\equiv \{ z \in \mathbb{C}\mid \ Im\,z > 0\}\).

Let ε be a positive real number and let K an arbitrary compact subset of Ω. We will show that \(\hat{\psi }(K) \subset C_{\epsilon }\), where \(C_{\epsilon } \equiv \{ z \in \mathbb{C}: -\epsilon <\arg z <\pi +\epsilon \}\).

Choose R > 0 such that \(\hat{\psi }(K)\) is contained in the disc D(0, R) of radius R centered at 0.

The sequence \(\varphi _{j}: \Omega \rightarrow \Omega \) is a normal family since \(\mathbb{C} \setminus \Omega \) contains a line segment with positive length. Every subsequence of \(\varphi _{j}\) contains a subsequence that converges uniformly on compact subsets, since \(\varphi _{j}(q)\) converges to p. Let \(g: \Omega \rightarrow \overline{\Omega }\) be a subsequential limit map. Then g(q) = p. Recall that \(p \in \partial \Omega \). Hence, the open mapping theorem yields that g(z) = p for every z ∈ Ω. Thus the sequence \(\varphi _{j}\) itself converges uniformly on compact subsets to the constant map with value p. Therefore we may choose N > 0 such that \(\varphi _{j}(K)\) is contained in a sufficiently small neighborhood of the origin for every j > N, and hence \(\alpha _{j} \circ \varphi _{j}(K) \subset C_{\epsilon }\) for every j > N. Then it follows immediately that \(\psi _{j}(K) \subset C_{\epsilon }\) for every j > N and consequently that

$$\displaystyle{\hat{\psi }(K) \subset C_{\epsilon }.}$$

Since K is an arbitrary compact subset of Ω, it follows that \(\hat{\psi }(\Omega ) \subset \overline{\mathcal{U}}\). We also have \(\hat{\psi }(q) = i\), since \(\psi _{j}(q) = L_{j} \circ \alpha _{j} \circ \varphi _{j}(q) = i\) for every j = 1, 2, . Therefore \(\hat{\psi }(\Omega ) \subset \mathcal{U}\).

Step 4. Convergence of \(\psi _{j}^{-1}\). Let \(\tilde{K}\) be an arbitrary compact subset of the upper half plane \(\mathcal{U}\). Then choose ε > 0 so that \(\tilde{K} \subset C_{\epsilon }\). Choose then r > 0 such that

$$\displaystyle{D(0,r) \cap C_{\epsilon } \subset \Omega \cap D(0,r).}$$

Shrinking r > 0 if necessary, since α j converges to the identity map uniformly on compact subsets of \(\mathbb{C}\), there exists N > 0 such that

$$\displaystyle{D(0,r) \cap C_{\epsilon } \subset \alpha _{j}(\Omega ) \cap D(0,r)}$$

for every j > N. Hence, we see that \(\psi _{j}^{-1}\) maps K into Ω. Since \(\Omega \subset \mathbb{C} \setminus E\) as observed before, we may again choose a subsequence of ψ j , which we again denote by ψ j , so that \(\psi _{j}^{-1}\) converges to a holomorphic map, say \(\tau: \mathcal{U}\rightarrow \overline{\Omega }\). Since τ is holomorphic and τ(i) = q, we see that τ maps the upper half plane \(\mathcal{U}\) into Ω.

Step 5. Synthesis. We are ready to complete the proof. By the Cauchy estimates, the derivatives j of ψ j as well as the derivatives \(d[\psi _{j}^{-1}]\) both converge. Therefore \(d\hat{\psi }(q) \cdot d\hat{\tau }(i) = 1\). This means that \(\hat{\psi }\circ \tau: \mathcal{U}\rightarrow \mathcal{U}\) is a holomorphic mapping satisfying \(\hat{\psi }\circ \tau (i) = i\) and \((\hat{\psi }\circ \tau )^{\prime}(i) = 1\). Then, by the Schwarz’s lemma, one concludes that \(\hat{\psi }\circ \tau = \mbox{ id}\), where id is the identity mapping. Likewise, the same reasoning applied to \(\tau \circ \hat{\psi }: \Omega \rightarrow \Omega \) implies that \(\tau \circ \hat{\psi } = \mbox{ id}\). So \(\hat{\psi }: \Omega \rightarrow \mathcal{U}\) is a biholomorphic mapping. □ 

Remark: The sequence of mappings ψ j constructed above is often called a scaling sequence. It is constructed from a composition of

  • The automorphisms carrying one fixed interior point successively to a boundary point

  • Certain affine adjustments

  • The stretching dilation map

The proof given above is a good example of the scaling technique. The main thrust of the method is that the image of the limit mapping is determined solely by the affine adjustments and the dilations, while the scaling sequence converges to a conformal mapping. □ 

Remark: As observed earlier, the main result here can be proved in a much simpler way. Namely, one may conclude immediately from the argument on the shrinking of \(\varphi _{j}(K)\) into a simply connected subset of Ω that Ω must be simply connected. Then the conclusion follows by the Riemann mapping theorem. But we are trying to skirt around the Riemann mapping theorem. The goal of this argument is to provide a basis for the scaling method which can be applied to the higher-dimensional cases. □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krantz, S.G. (2013). Curvature of the Bergman Metric. In: Geometric Analysis of the Bergman Kernel and Metric. Graduate Texts in Mathematics, vol 268. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7924-6_7

Download citation

Publish with us

Policies and ethics