Skip to main content

Abstract

This chapter addresses the key points of wireless sensor nodes: applications, constraints, architecture, operating systems, and security concerns. It does not pretend to be exhaustive but to provide the major references on these topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practice very few applications use thousands of nodes. However theoretically, for instance, in military applications like battlefield surveillance, a huge number of nodes may be required. The biggest wireless sensor networks publicly known that have ever been built are: a system based on MyriaNed and composed of more than 1000 nodes [14, 38]; an 800 nodes network called the “Largest Tiny Network Yet” deployed at Berkeley [5] in 2001; WISEBED [21] which is made of around 750 nodes but split in several subnetworks; the architecture described in [7] that uses 273 sensors and 47 wireless nodes to monitor nectarine orchard.

References

  1. 3eti: Company overview http://www.ultra-3eti.com/assets/1/7/3eTI_-_Company_Overview_(07--26-2011).pdf

  2. Datasheet of energyguard appliance 3e–723 http://www.ultra-3eti.com/assets/1/7/3e-723_EnergyGuard.pdf

  3. Energyguard appliance 3e–723 webpage product http://www.ultra-3eti.com/products/sensor_networks/energyguard_appliance/

  4. Globalsecurity.org. sound surveillance system (sosus). http://www.globalsecurity.org/intell/systems/sosus.htm

  5. Largest tiny network yet (2001). http://webs.cs.berkeley.edu/800demo/

  6. Secure routing in wireless sensor networks: attacks and countermeasures (2003). doi: 10.1109/SNPA.2003.1203362. http://dx.doi.org/10.1109/SNPA.2003.1203362

  7. Integrated smart sensing systems (2007). http://dpi.projectforum.com/isss/11

  8. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38(4), 393–422 (2002). doi: 10.1016/S1389-1286(01)00302-4. http://www.sciencedirect.com/science/article/pii/S1389128601003024

    Google Scholar 

  9. Anjum, F., Sarkar, S.: Security in sensor networks. In: Mobile, Wireless and Sensor Networks: Technology, Applications and Future Directions. John Wiley & Sons.

    Google Scholar 

  10. Becher, E., Benenson, Z., Dornseif, M.: Tampering with motes: Real-world physical attacks on wireless sensor networks. In: in 3rd International Conference on Security in Pervasive Computing (SPC (2006).

    Google Scholar 

  11. Benenson, Z., Cholewinski, P.M., Freiling, F.C.: Vulnerabilities and attacks in wireless sensor networks. Wireless Sensors Networks Security pp. 22–43 (2007). http://www1.informatik.uni-erlangen.de/filepool/publications/zina/attacker-models-bookchapterIOS_Press.pdf

  12. Bialas, A.: Common criteria related security design patterns alidation on the intelligent sensor example designed for mine environment. Sensors 10(5), 4456–4496 (2010). doi: 10.3390/s100504456. http://www.mdpi.com/1424-8220/10/5/4456/

  13. Bialas, A.: Intelligent sensors security. Sensors 10(1), 822–859 (2010). doi: 10.3390/s100100822. http://www.mdpi.com/1424-8220/10/1/822/

    Google Scholar 

  14. Bisscheroux, M.: Largest deployment of myrianed wireless nodes (2010). http://wsn.chess.nl/?p=50

  15. Bonnet, P., Gehrke, J.E., Seshadri, P.: Querying the physical world. IEEE Journal of Selected Areas in Communications 7(5),10–15 (2000).

    Google Scholar 

  16. Burrell, J., Brooke, T., Beckwith, R.: Sensor and actuator networks- Vineyard computing: sensor networks in agricultural production. IEEE Pervasive Computing 3(1), 38–45 (2004). doi: http://dx.doi.org/10.1109/MPRV.2004.1269130

  17. Cao, Q., Abdelzaher, T.: liteos: a lightweight operating system for c++ software development in sensor networks. In: Proceedings of the 4th international conference on Embedded networked sensor systems, SenSys ’06, pp. 361–362. ACM, New York, NY, USA (2006). doi: http://doi.acm.org/10.1145/1182807.1182855.

  18. Carman, D.W., Kruus, P.S., Matt, B.J.: Constraints and approaches for distributed sensor network security. Tech. Rep. 010, NAI Labs, The Security Research Division Network Associates, Inc. (2000). http://www.cs.umbc.edu/courses/graduate/CMSC691A/Spring04/papers/nailabs_report_00-010_final.pdf

  19. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of software-based attestation of embedded devices. In: Proceedings of the 16th ACM conference on Computer and communications security, CCS ’09, pp. 400–409. ACM, New York, NY, USA (2009). doi: http://doi.acm.org/10.1145/1653662.1653711.

  20. Chandrakasan, A., Amirtharajah, R., Cho, S., Goodman, J., Konduri, G., Kulik, J., Rabiner, W., Wang, A.: Design considerations for distributed micro-sensor systems. In: Proceedings of the IEEE 1999 Custom Integrated Circuits Conference, pp. 279-286 (1999).

    Google Scholar 

  21. Chatzigiannakis, I., Fischer, S., Koninis, C., Mylonas, G., Pfisterer, D.: Wisebed: An open large-scale wireless sensor network testbed (2010). http://dx.doi.org/10.1007/978-3-642-11870-8_6.10.1007/978-3-642-11870-8_6

  22. Clark, C.W., Mellinger, D.K.: Application of navy iuss for whale research. The Journal of the Acoustical Society of America 96(5), 3315–3315 (1994). doi: 10.1121/1.410808. http://link.aip.org/link/?JAS/96/3315/1

    Google Scholar 

  23. Crow, B., Widjaja, I., Kim, J., Sakai, P.: IEEE 802.11 Wireless Local Area Networks. IEEE Communications Magazine pp. 116–126 (1997).

    Google Scholar 

  24. Dargie, W., Poellabauer, C.: Fundamentals of Wireless Sensor Networks: Theory and Practice. Wireless Communications and Mobile Computing. Wiley (2010). http://books.google.fr/books?id=8c6k0EVr6rMC

  25. Deng, J., Han, R., Mishra, S.: A performance evaluation of intrusion-tolerant routing in wireless sensor networks. In: Proceedings of the 2nd international conference on Information processing in sensor networks, IPSN’03, pp. 349–364. Springer-Verlag, Berlin, Heidelberg (2003). http://dl.acm.org/citation.cfm?id=1765991.1766015

  26. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system for tiny networked sensors. In: Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, LCN ’04, pp. 455–462. IEEE Computer Society, Washington, DC, USA (2004). doi: http://dx.doi.org/10.1109/LCN.2004.38.

  27. Eagles, K., Markantonakis, K., Mayes, K.: A comparative analysis of common threats, vulnerabilities, attacks and countermeasures within smart card and wireless sensor network node technologies. In: Proceedings of the 1st IFIP TC6 /WG8.8 /WG11.2 international conference on Information security theory and practices: smart cards, mobile and ubiquitous computing systems, WISTP’07, pp. 161–174. Springer-Verlag, Berlin, Heidelberg (2007). http://dl.acm.org/citation.cfm?id=1763190.1763209

  28. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In: In Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 41–47. ACM Press (2002).

    Google Scholar 

  29. Farahani, S.: ZigBee Wireless Networks and Transceivers. Newnes, Newton, MA, USA (2008).

    Google Scholar 

  30. Francillon, A., Castelluccia, C.: Code injection attacks on harvard-architecture devices. In: Proceedings of the 15th ACM conference on Computer and communications security, CCS ’08, pp. 15–26. ACM, New York, NY, USA (2008). doi: http://doi.acm.org/10.1145/1455770.1455775. http://doi.acm.org/10.1145/1455770.1455775

  31. Francillon, A., Castelluccia, C., Perito, D., Soriente, C.: Comments on efutation of on the difficulty of software-based attestation of embedded devices (2010).

    Google Scholar 

  32. Frank, R.: Understanding Smart Sensors. Measurement Science and Technology 11(12), 1830 (2000). doi: http://dx.doi.org/10.1088/0957-0233/11/12/711

  33. Gay, D., Levis, P., Culler, D.: Software design patterns for tinyos. ACM Trans. Embed. Comput. Syst. 6 (2007). doi: http://doi.acm.org/10.1145/1274858.1274860.

  34. Goodspeed, T.: Exploiting wireless sensor networks over 802.15.4. In: ToorCon 9 (2007).

    Google Scholar 

  35. Gu, Q., Noorani, R.: Towards self-propagate mal-packets in sensor networks. In: Proceedings of the first ACM conference on Wireless network security, WiSec ’08, pp. 172–182. ACM, New York, NY, USA (2008). doi: http://doi.acm.org/10.1145/1352533.1352563. http://doi.acm.org/10.1145/1352533.1352563

  36. Han, C.C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A dynamic operating system for sensor nodes. In: Proceedings of the 3rd international conference on Mobile systems, applications, and services, MobiSys ’05, pp. 163–176. ACM, New York, NY, USA (2005). doi: http://doi.acm.org/10.1145/1067170.1067188.

  37. Hefeeda, M., Bagheri, M.: Wireless sensor networks for early detection of forest fires. In: IEEE 4th International Conference on Mobile Adhoc and Sensor Systems, MASS 2007, 8–11 October 2007, Pisa, Italy, pp. 1–6. IEEE (2007). doi: http://dx.doi.org/10.1109/MOBHOC.2007.4428702

  38. Heukoop, C.V.: Alwen 1000 node experiment. In: Elektronica (2010). http://wsn.chess.nl/wp-content/uploads/2010/02/AlwEN-1000node-exp-Elektronica-janfeb2010.pdf

  39. Hu, W., Tan, H., Corke, P., Shih, W.C., Jha, S.: Toward trusted wireless sensor networks. ACM Trans. Sen. Netw. 7, 5:1–5:25 (2010). doi: http://doi.acm.org/10.1145/1806895.1806900.

    Google Scholar 

  40. Hu, Y.C., Perrig, A., Johnson, D.B.: Rushing attacks and defense in wireless ad hoc network routing protocols. In: Proceedings of the 2nd ACM workshop on Wireless security, WiSe ’03, pp. 30–40. ACM, New York, NY, USA (2003). doi: http://doi.acm.org/10.1145/941311.941317. http://doi.acm.org/10.1145/941311.941317

  41. Johnson, P., Andrews, D.C.: Remote continuous physiological monitoring in the home. Journal of Telemedicine and Telecare 2(2), 107–113 (1996).

    Google Scholar 

  42. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L.S., Rubenstein, D.: Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with zebranet. SIGPLAN Not. 37, 96–107 (2002). doi: http://doi.acm.org/10.1145/605432.605408. http://doi.acm.org/10.1145/605432.605408

  43. Kumar, S., Shepherd, D.: SensIT: Sensor Information Technology for the warfighter. In: Proceedings of the 4th Conference on Information Fusion, pp. 3–9. Montreal, Canada (2001).

    Google Scholar 

  44. Larsson, A.: Report on the state of the art of security in sensor, networks (2011).

    Google Scholar 

  45. Lee, K.: Ieee 1451: A standard in support of smart transducer networking. In: Proceedings of IEEE Instrumentation and Measurement, vol. 2, pp. 525–528. IEEE (2000). http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=848791

  46. Lennvall, T., Svensson, S., Hekland, F.: A comparison of WirelessHART and ZigBee for industrial applications. In: Factory Communication Systems, 2008. WFCS 2008. IEEE International Workshop on, pp. 85–88 (2008). doi: http://dx.doi.org/10.1109/WFCS.2008.4638746

  47. Li, Y., McCune, J.M., Perrig, A.: Viper: verifying the integrity of peripherals’ firmware. In: Proceedings of the 18th ACM conference on Computer and communications security, CCS ’11, pp. 3–16. ACM, New York, NY, USA (2011). doi: http://doi.acm.org/10.1145/2046707.2046711

  48. Lopez, J., Roman, R., Alcaraz, C.: Analysis of security threats, requirements, technologies and standards in wireless sensor networks. In: A. Aldini, G. Barthe, R. Gorrieri (eds.) Foundations of Security Analysis and Design V, Lecture Notes in Computer Science, vol. 5705, pp. 289–338. Springer Berlin/Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-03829-7_10.

  49. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sensor networks for habitat monitoring. In: Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications, WSNA ’02, pp. 88–97. ACM, New York, NY, USA (2002). doi: http://doi.acm.org/10.1145/570738.570751.

  50. Mills, K.: A brief survey of self-organization in wireless sensor networks. Wireless Communications and Mobile Computing 7(7), 823–834 (2007).

    Google Scholar 

  51. Nishimura, C.E., Conlon, D.M.: Iuss dual use: Monitoring whales and earthquakes using sosus. Marine Technology Society Journal 27(4), 13–21 (1994).

    Google Scholar 

  52. Perrig, A., van Doorn, L.: Refutation of n the Difficulty of Software-Based Attestation of Embedded Devices (2010). http://sparrow.ece.cmu.edu/group/pub/perrig-vandoorn-refutation.pdf

  53. Perrig, A., Stankovic, J., Wagner, D.: Security in wireless sensor networks. COMMUNICATIONS OF THE ACM 47(6), 53–57 (2004).

    Google Scholar 

  54. Rabaey, J.M., Ammer, M.J., da Silva, J.L., Patel, D., Roundy, S.: Picoradio supports ad hoc ultra-low power wireless networking. Computer 33, 42–48 (2000). doi: 10.1109/2.869369. http://dl.acm.org/citation.cfm?id=619053.621512

  55. Roundy, S., Steingart, D., Frechette, L., Wright, P., Rabaey, J.: Power Sources for Wireless Sensor Networks. pp. 1–17 (2004). http://www.springerlink.com/content/b0utgm8ahnphll3l

  56. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications 26(11), 1131–1144 (2003). doi: http://www.sciencedirect.com/science/article/pii/S0140366402002487

    Google Scholar 

  57. Seshadri, A., Luk, M., Perrig, A., Doorn, L., Khosla, P.: Scuba: Secure code update by attestation in sensor networks. In: in Proceedings of ACM Workshop on Wireless Security (WiSe6). ACM, pp. 85–94. Press (2006).

    Google Scholar 

  58. Seshadri, A., Perrig, A., Doorn, L.V., Khosla, P.: Swatt: Software-based attestation for embedded devices. In: In Proceedings of the IEEE Symposium on Security and Privacy (2004).

    Google Scholar 

  59. Shih, E., Bahl, P., Sinclair, M.J.: Wake on wireless: an event driven energy saving strategy for battery operated devices. In: MobiCom ’02: Proceedings of the 8th annual international conference on Mobile computing and networking, pp. 160–171. ACM, New York, NY, USA (2002). doi: http://dx.doi.org/10.1145/570645.570666

  60. Shih, E., Cho, S.H., Ickes, N., Min, R., Sinha, A., Wang, A., Chandrakasan, A.: Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks. In: Proceedings of the 7th annual international conference on Mobile computing and networking, MobiCom ’01, pp. 272–287. ACM, New York, NY, USA (2001). doi: http://doi.acm.org/10.1145/381677.381703.

  61. Simon, G., Maróti, M., Lédeczi, A., Balogh, G., Kusy, B., Nádas, A., Pap, G., Sallai, J., Frampton, K.: Sensor network-based countersniper system. In: Proceedings of the 2nd international conference on Embedded networked sensor systems, SenSys ’04, pp. 1–12. ACM, New York, NY, USA (2004). doi: http://doi.acm.org/10.1145/1031495.1031497.

  62. Song, J., Han, S., Mok, A., Chen, D., Lucas, M., Nixon, M., Pratt, W.: Wirelesshart: Applying wireless technology in real-time industrial process control. In: Proceedings of the 2008 IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 377–386. IEEE Computer Society, Washington, DC, USA (2008). doi: 10.1109/RTAS.2008.15. http://dl.acm.org/citation.cfm?id=1440456.1440604

  63. Song, J., Han, S., Mok, A.K., Chen, D., Lucas, M., Nixon, M.: WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control. In: Real-Time and Embedded Technology and Applications Symposium, 2008. RTAS ’08. IEEE, vol. 0, pp. 377–386. IEEE, Los Alamitos, CA, USA (2008). doi: http://dx.doi.org/10.1109/RTAS.2008.15

  64. Surhone, L., Tennoe, M., Henssonow, S.: Isa100.11a. VDM Verlag Dr. Mueller AG & Co. Kg (2010). http://books.google.fr/books?id=F_BMYgEACAAJ

  65. Werner-Allen, G., Johnson, J., Ruiz, M., Lees, J., Welsh, M.: Monitoring volcanic eruptions with a wireless sensor network. In: Wireless Sensor Networks, 2005. Proceeedings of the Second European Workshop on, pp. 108–120. IEEE (2005). doi: http://dx.doi.org/10.1109/EWSN.2005.1462003

  66. Wood, A.D., Stankovic, J.A.: Denial of service in sensor networks. Computer 35, 54–62 (2002). doi: http://dx.doi.org/10.1109/MC.2002.1039518.

    Google Scholar 

  67. Wright, R., Flynn, L., Garbeil, H., Harris, A., Pilger, E.: Automated volcanic eruption detection using MODIS. Remote Sensing of Environment 82(1), 135–155 (2002). doi: http://dx.doi.org/10.1016/S0034-4257(02)00030-5

  68. Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw. 12, 493–506 (2004). doi: http://dx.doi.org/10.1109/TNET.2004.828953.

Download references

Acknowledgments

The authors want to thank the reviewers for their constructive comments which were helpful to improve this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Chaumette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chaumette, S., Sauveron, D. (2014). Wireless Sensor Nodes. In: Markantonakis, K., Mayes, K. (eds) Secure Smart Embedded Devices, Platforms and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7915-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7915-4_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7914-7

  • Online ISBN: 978-1-4614-7915-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics