Charge Trapping in MOSFETS: BTI and RTN Modeling for Circuits

  • Gilson Wirth
  • Yu Cao
  • Jyothi B. Velamala
  • Ketul B. Sutaria
  • Takashi Sato
Chapter

Abstract

This chapter presents experimental investigation and statistical modeling of charge trapping in the context of random telegraph noise (RTN) and bias temperature instability (BTI). The goal is to develop circuit (electrical) level models to support circuit designers. The developed modeling approach is based on discrete device physics quantities, which are shown to cause statistical variability in the electrical behavior of MOSFETs. Besides evaluating the average behavior, the modeling approach here proposed allows the derivation of statistically relevant parameters. It allows the derivation of an analytical formulation for the both noise (RTN) and aging (BTI) behavior. Monte Carlo simulations are also discussed and presented. Good agreement between experimental data, Monte Carlo simulations, and model is found.

Keywords

SiO2 Attenuation Autocorrelation 

References

  1. 1.
    G Wirth et al. “Modeling of Statistical Low-Frequency Noise of Deep-Submicron MOSFETs”, IEEE Trans. Electron Dev., 52, p. 1576 (2005).Google Scholar
  2. 2.
    G Wirth, R da Silva and R Brederlow. “Statistical Model for the Circuit Bandwidth Dependence of Low-Frequency Noise in Deep-Submicrometer MOSFETs”, IEEE Trans. Electron Dev., 54, p. 340–345 (2007).Google Scholar
  3. 3.
    G Wirth et al. “Statistical model for MOSFET low-frequency noise under cyclo-stationary conditions” Int Electron Dev Meeting - IEDM 2009, p. 30.5.1 (2009).Google Scholar
  4. 4.
    G Wirth and R da Silva, “Low-Frequency Noise Spectrum of Cyclo-Stationary Random Telegraph Signals”, Electrical Eng., 90, p. 435 (2008).Google Scholar
  5. 5.
    R da Silva, G Wirth and L Brusamarello. “An appropriate model for the noise power spectrum produced by traps at the Si SiO interface: a study of the influence of a time-dependent Fermi level. Journal of Statistical Mechanics” J. of Statistical Mechanics. Theory and Experiment, 2008, p. P10015 (2008).Google Scholar
  6. 6.
    R Brederlow et al. “Low Frequency Noise Considerations for CMOS Analog Circuit Design” Proceedings of the 2005 Int. Conf. on Noise and Fluctuations (ICNF). p. 703 (2005).Google Scholar
  7. 7.
    R Brederlow, J Koh and R Thewes. “A physics-based low frequency noise model for MOSFETs under periodic large signal excitation” Solid-State El., 50, p. 668 (2006).Google Scholar
  8. 8.
    I Bloom and Y Nemirovsky. “1/f noise reduction of metal‐oxide‐semiconductor transistors by cycling from inversion to accumulation” Appl Phys Lett, 58, p.1664 (1991).Google Scholar
  9. 9.
    B Dierickx and E Simoen. “The decrease of “random telegraph signal” noise in metal‐oxide‐semiconductor field‐effect transistors when cycled from inversion to accumulation”. J Appl Phys, 71, p. 2028 (1992).Google Scholar
  10. 10.
    M Ertürk, T Xia and W Clark “Gate voltage dependence of mosfet 1/f noise statistics” IEEE Elec Dev Let, 28 p. 812 (2007).Google Scholar
  11. 11.
    A van der Wel et al. “Relating random telegraph signal noise in metal-oxide-semiconductor transistors to interface trap energy distribution” Appl Phys Lett., 87, p. 183507 (2005).Google Scholar
  12. 12.
    S Machlup, “Noise in semiconductors: spectrum of a twoparameter random signal” J Appl Phys, 35, p. 341 (1954).Google Scholar
  13. 13.
    A Roy and C Enz, “Analytical modeling of large-signal cyclo-stationary low-frequency noise with arbitrary periodic input”, IEEE Trans. Electron Dev., 54, p.2537 (2007).Google Scholar
  14. 14.
    M Kirton and M Uren “Noise in solid-state microstructures: a new perspective on individual defects, interface states and low-frequency (1/ƒ) noise” Adv. in Phys., 38, p. 367 (1989).Google Scholar
  15. 15.
    S Ekbote et al., “45nm low-power CMOS SoC technology with aggressive reduction of random variation for SRAM and analog transistors”, VLSI Tech. Symp., p. 160 (2008).Google Scholar
  16. 16.
    V Camargo et al. “Impact of rdf and rts on the performance of sram cells” J. of Comput. Electronics, p. 122 (2010).Google Scholar
  17. 17.
    K.K. Hung et al. “A physics-based mosfet noise model for circuit simulators” IEEE Trans. Electron Dev., 37 p. 1323 (1990).CrossRefGoogle Scholar
  18. 18.
    T. Sato, et al., “A device array for efficient bias temperature instability measurements,” ESSDERC, pp. 143–146, 2011.Google Scholar
  19. 19.
    W. Wang et al. “Compact modeling and simulation of circuit reliability for 65 nm CMOS technology,” IEEE Trans. Dev. Mat. Reliab., 7, p. 509 (2007).CrossRefGoogle Scholar
  20. 20.
    R da SILVA and G Wirth. “Logarithmic behavior of the degradation dynamics of metal oxide semiconductor devices”, Journal of Statistical Mechanics, v. P04025, p. 01 (2010).Google Scholar
  21. 21.
    G Wirth, R da Silva, and B Kaczer “Statistical model for mosfet bias temperature instability component due to charge trapping” IEEE Trans. on Electron Dev., 58, p.2743 (2011).Google Scholar
  22. 22.
    T. L. Tewksbury and H.-S. Lee, “Characterization, modeling and minimization of transient threshold voltage shifts in MOSFETs” IEEE J. Solid-State Circ., 29, p. 239 (1994).CrossRefGoogle Scholar
  23. 23.
    D. K. Schroder, “Negative bias temperature instability: What do we understand?” Microel. Reliab., 47, p. 841 (2007).CrossRefGoogle Scholar
  24. 24.
    V. Huard et al. “NBTI degradation: From Transistor to SRAM Arrays,” Proc. Int. Rel. Phys. Symp., p. 289 (2008).Google Scholar
  25. 25.
    S. E. Rauch, “Review and reexamination of reliability effects related to NBTI statistical variations” IEEE Trans Dev. Mat. Rel., 7, p. 524 (2007).CrossRefGoogle Scholar
  26. 26.
    M.A. Alam et al. “A comprehensive model for pmos nbti degradation: recent progress” Microel. Reliab. p. 853 (2007).Google Scholar
  27. 27.
    B. Kaczer et al. “NBTI from the perspective of defect states with widely distributed times,” Proc. Int. Rel. Phys. Symp., p. 55 (2009).Google Scholar
  28. 28.
    Reisinger et al. “The statistical analysis of individual defects constituting NBTI and its implications for modeling DC- and AC-stress” Proc. Int. Rel. Phys. Symp., p.7 (2010).Google Scholar
  29. 29.
    V. Huard et al. “New characterization and modeling approach for NBTI degradation from transistor to product level”. Int Electron Dev Meeting, p. 797 (2007).Google Scholar
  30. 30.
    T Grasser and B Kaczer, “Evidence That Two Tightly Coupled Mechanisms Are Responsible for Negative Bias Temperature Instability in Oxynitride MOSFETs”, IEEE Trans. on Electron Dev., 56, p. 1056 (2009).Google Scholar
  31. 31.
    T. Grasser et al. “Switching oxide traps as the missing link between negative bias temperature instability and random telegraph noise”, Int. Electron Dev. Meeting, p. 729 (2009).Google Scholar
  32. 32.
    B. Kaczer et al. “Ubiquitous Relaxation in BTI stressing—New Evaluation and Insights”, Proc. Int. Reliab. Phys. Symp., p. 20 (2008).Google Scholar
  33. 33.
    Z. Liu, B. W. McGaughy, and J. Z. Ma, “Design tools for reliability analysis,” DACDesing Aut. Conf., p. 182 (2006).Google Scholar
  34. 34.
    M. Denais et al. “On-the-fly characterization of nbti in ultra-thin gate oxide pmosfets” Int. Elec. Dev. Meet., p. 109 (2004).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gilson Wirth
    • 1
  • Yu Cao
    • 2
  • Jyothi B. Velamala
    • 2
  • Ketul B. Sutaria
    • 2
  • Takashi Sato
    • 3
  1. 1.UFRGS – Electrical Eng DepartmentPorto AlegreBrazil
  2. 2.Arizona State UniversityTempeUSA
  3. 3.Graduate School of InformaticsKyoto UniversityKyotoJapan

Personalised recommendations