Skip to main content

Application of On-Chip Device Heating for BTI Investigations

  • Chapter
  • First Online:
Book cover Bias Temperature Instability for Devices and Circuits

Abstract

This chapter introduces a new experimental approach allowing to switch the temperature of a device in a very fast and defined way. The new hardware tool, which we will herein refer to as polycrystalline silicon heater or simply poly-heater, allows overcoming previously strict experimental limitations regarding the speed of temperature variation and the accessibility of temperature range. Having broadened one’s mind to the possibility of switching the temperature very fast at arbitrary points in time, the poly-heater technique opens up unprecedented experimental capabilities for bias temperature instability (BTI) characterization. For instance, one can achieve decoupling of stress and characterization temperature by making use of degradation quenching. Such or similar experiments can probe our understanding of the BTI physics in a novel manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Muth, W. Walter, in Proc.ESSDERC (2007), pp. 1251–1262

    Google Scholar 

  2. C. Schluender, R.P. Vollertsen, W. Gustin, H. Reisinger, in Proc.ESSDERC (2007), pp. 131–134

    Google Scholar 

  3. T.K. Kang, C.S. Wang, K.C. Su, Jpn.J.Appl.Phys. 46, 7639 (2007)

    Google Scholar 

  4. C.S. Wang, W.C. Chang, W.S. Ke, C.T. Chiang, C.F. Lee, K.C. Su, in Proc.SSDM (2005), pp. 580–581

    Google Scholar 

  5. C.S. Wang, W.C. Chang, W.S. Ke, K.C. Su, in Proc.IIRW (2006), pp. 136–138

    Google Scholar 

  6. H. Köck, V. Košel, C. Djelassi, M. Glavanovics, D. Pogany, Microelectron.Reliab. 49, 1132 (2009)

    Article  Google Scholar 

  7. A. Kelleha, W. Lane, IEEE Trans.Nucl.Sci. 43, 997 (1996)

    Article  Google Scholar 

  8. W. Liu, M. Asheghi, J. Appl. Phys. 98, 123523 (2005)

    Article  Google Scholar 

  9. A. Cardoso, A.K. Srivastava, J. Vac. Sci. Tech. B 19, 397 (2001)

    Article  Google Scholar 

  10. H. Ibele, K. Reitinger, in IEEE Semiconductor Wafer Test Workshop (2005)

    Google Scholar 

  11. P. Leturcq, J.M. Dorkel, A. Napieralski, E. Lachiver, Trans. Elec. Dev. 34, 1147 (1987)

    Article  Google Scholar 

  12. C.J. Glassbrenner, G.A. Slack, Phys. Rev. 134, A1058 (1964)

    Article  Google Scholar 

  13. G.A. Slack, J. Appl. Phys. 35, 3460 (1964)

    Article  Google Scholar 

  14. T. Aichinger, M. Nelhiebel, T. Grasser, in Proc.ESREF (2008), pp. 1178–1184

    Google Scholar 

  15. T. Aichinger, M. Nelhiebel, T. Grasser, in Proc.IRPS (2009), pp. 2–7

    Google Scholar 

  16. H. Reisinger, O. Blank, W. Heinrigs, A. Mühlhoff, W. Gustin, C. Schlünder, in Proc.IRPS (2006), pp. 448–453

    Google Scholar 

  17. B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, M. Goodwin, in Proc.IRPS (2005), pp. 381–387

    Google Scholar 

  18. G. Pobegen, T. Aichinger, M. Nelhiebel, T. Grasser, in IEDM Tech. Dig. (2011), pp. 27.3.1–27.3.4

    Google Scholar 

  19. B. Tuttle, Phys.Rev.B 59, 12884 (1999)

    Google Scholar 

  20. S. Ganichev, E. Ziemann, W. Prettl, I. Yassievich, A. Istratov, E. Weber, Phys.Rev.B 61, 61 (2000)

    Google Scholar 

  21. W. Gös, M. Karner, S. Tyaginov, P. Hehenberger, T. Grasser, in Proc.SISPAD (2008), pp. 69–72

    Google Scholar 

Download references

Acknowledgements

This work was jointly funded by the Austrian Research Promotion Agency (FFG, Project No. 831163) and the Carinthian Economic Promotion Fund (KWF, contract KWF-1521|22741|34186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Aichinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aichinger, T., Pobegen, G., Nelhiebel, M. (2014). Application of On-Chip Device Heating for BTI Investigations. In: Grasser, T. (eds) Bias Temperature Instability for Devices and Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7909-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7909-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7908-6

  • Online ISBN: 978-1-4614-7909-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics