Advanced Modeling of Oxide Defects

  • Wolfgang GoesEmail author
  • Franz Schanovsky
  • Tibor Grasser


During the last couple of years, there is growing experimental evidence which confirms charge trapping as the recoverable component of BTI. The trapping process is believed to be a non-radiative multiphonon (NMP) process, which is also encountered in numerous physically related problems. Therefore, the underlying NMP theory is frequently found as an important ingredient in the youngest BTI reliability models. While several different descriptions of the NMP transitions are available in literature, most of them are not suitable for the application to device simulation. In this chapter, we will present a rigorous derivation that starts out from the microscopic Franck–Condon theory and yields generalized trapping rates accounting for all possible NMP transitions with the conduction and the valence band in the substrate as well as in the poly-gate. Most importantly, this derivation considers the more general quadratic electron–phonon coupling contrary to several previous charge trapping models. However, the pure NMP transitions do not suffice to describe the charge trapping behavior seen in time-dependent defect spectroscopy (TDDS). Inspired by these measurements, we introduced metastable states, which have a strong impact on the trapping dynamics of the investigated defect. It is found that these states provide an explanation for plenty of experimental features observed in TDDS measurements. In particular, they can explain the behavior of fixed as well as switching oxide hole traps, both regularly observed in TDDS measurements.


Gate Bias Valence Band Edge Charge Trapping Adiabatic Potential Hole Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has received funding from the Austrian Science Fund (FWF) project n 23390-N24 and the European Communities FP7 n 261868 (MORDRED).


  1. 1.
    K.O. Jeppson and C.M. Svensson, “Negative Bias Stress of MOS Devices at High Electric Fields and Degradation of MNOS Devices,” J.Appl.Phys., vol. 48, no. 5, pp. 2004–2014, 1977.CrossRefGoogle Scholar
  2. 2.
    S. Ogawa and N. Shiono, Phys.Rev.B, vol. 51, no. 7, pp. 4218–4230, 1995.Google Scholar
  3. 3.
    B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and M. Goodwin, “Disorder-Controlled-Kinetics Model for Negative Bias Temperature Instability and its Experimental Verification,” in Proc.IRPS, 2005, pp. 381–387.Google Scholar
  4. 4.
    S. Zafar, “Statistical Mechanics Based Model for Negative Bias Temperature Instability Induced Degradation,” J.Appl.Phys., vol. 97, no. 10, pp. 1–9, 2005.CrossRefGoogle Scholar
  5. 5.
    M. Houssa, M. Aoulaiche, S. De Gendt, G. Groeseneken, M.M. Heyns, and A. Stesmans, “Reaction-Dispersive Proton Transport Model for Negative Bias Temperature Instabilities,” Appl.Phys.Lett., vol. 86, no. 9, pp. 1–3, 2005.CrossRefGoogle Scholar
  6. 6.
    M.A. Alam, H. Kufluoglu, D. Varghese, and S. Mahapatra, “A Comprehensive Model for pMOS NBTI Degradation: Recent Progress,” Microelectron.Reliab., vol. 47, no. 6, pp. 853–862, 2007.CrossRefGoogle Scholar
  7. 7.
    S. Chakravarthi, A.T. Krishnan, V. Reddy, C.F. Machala, and S. Krishnan, “A Comprehensive Framework for Predictive Modeling of Negative Bias Temperature Instability,” in Proc.IRPS, 2004, pp. 273–282.Google Scholar
  8. 8.
    T. Grasser, W. Goes, and B. Kaczer, “Towards Engineering Modeling of Negative Bias Temperature Instability,” in Defects in Microelectronic Materials and Devices, D. Fleetwood, R. Schrimpf, and S. Pantelides, Eds., pp. 1–30. Taylor and Francis/CRC Press, 2008.Google Scholar
  9. 9.
    F. Schanovsky and T. Grasser (2013) On the microscopic limit of the RD model. In: T. Grasser (eds) Bias temperature instability for devices and circuits. Springer, New YorkGoogle Scholar
  10. 10.
    F. Schanovsky and T. Grasser, “On the Microscopic Limit of the Reaction-Diffusion Model for Negative Bias Temperature Instability,” in Proc.IIRW, 2011, pp. 17–21.Google Scholar
  11. 11.
    F. Schanovsky and T. Grasser, “On the Microscopic Limit of the Modified Reaction-Diffusion Model for Negative Bias Temperature Instability,” in Proc.IRPS, 2012, pp. XT.10.1–6.Google Scholar
  12. 12.
    B. Kaczer, T. Grasser, J. Martin-Martinez, E. Simoen, M. Aoulaiche, Ph.J. Roussel, and G. Groeseneken, “NBTI from the Perspective of Defect States with Widely Distributed Time Scales,” in Proc.IRPS, 2009, pp. 55–60.Google Scholar
  13. 13.
    H. Reisinger, T. Grasser, and C. Schlünder, “A Study of NBTI by the Statistical Analysis of the Properties of Individual Defects in pMOSFETs,” in Proc.IIRW, 2009, pp. 30–35.Google Scholar
  14. 14.
    T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer, Phys.Rev.B, vol. 82, no. 24, pp. 245318, 2010.Google Scholar
  15. 15.
    P.-J. Wagner, T. Grasser, H. Reisinger, and B. Kaczer, “Oxide Traps in MOS Transistors: Semi-Automatic Extraction of Trap Parameters from Time Dependent Defect Spectroscopy,” in Proc.IPFA, 2010, pp. 249–254.Google Scholar
  16. 16.
    T. Grasser, H. Reisinger, P.-J. Wagner, F. Schanovsky, W. Goes, and B. Kaczer, “The Time Dependent Defect Spectroscopy (TDDS) for the Characterization of the Bias Temperature Instability,” in Proc.IRPS, 2010, pp. 16 –25.Google Scholar
  17. 17.
    H. Reisinger, T. Grasser, W. Gustin, and C. Schlünder, “The Statistical Analysis of Individual Defects Constituting NBTI and its Implications for Modeling DC- and AC-Stress,” in Proc.IRPS, 2010, pp. 7–15.Google Scholar
  18. 18.
    B. Kaczer, T. Grasser, Ph.J. Roussel, J. Franco, R. Degraeve, L.A. Ragnarsson, E. Simoen, G. Groeseneken, and H. Reisinger, “Origin of NBTI Variability in Deeply Scaled PFETs,” in Proc.IRPS, 2010, pp. 1095–1098.Google Scholar
  19. 19.
    H. Reisinger (2013) The time dependent defect spectroscopy. In: T. Grasser (eds) Bias temperature instability for devices and circuits. Springer, New YorkGoogle Scholar
  20. 20.
    V. Huard, C. Parthasarathy, N. Rallet, C. Guerin, M. Mammase, D. Barge, and C. Ouvrard, “New Characterization and Modeling Approach for NBTI Degradation from Transistor to Product Level,” in Proc.IEDM, 2007, pp. 797–800.Google Scholar
  21. 21.
    T.L. Tewksbury, Relaxation Effects in MOS Devices due to Tunnel Exchange with Near-Interface Oxide Traps, Ph.D. Thesis, MIT, 1992.Google Scholar
  22. 22.
    I. Lundstrom and C. Svensson, “Tunneling to Traps in Insulators,” J.Appl.Phys., vol. 43, no. 12, pp. 5045–5047, 1972.CrossRefGoogle Scholar
  23. 23.
    F.P. Heiman and G. Warfield, “The Effects of Oxide Traps on the MOS Capacitance,” IEEE Trans.Elect.Dev., vol. 12, no. 4, pp. 167–178, 1965.CrossRefGoogle Scholar
  24. 24.
    S. Christensson, I. Lundström, and C. Svensson, “Low Frequency Noise in MOS Transistors — I Theory,” Sol.-St.Electr., vol. 11, pp. 797–812, 1968.Google Scholar
  25. 25.
    W. Shockley and W.T. Read, Phys.Rev., vol. 87, no. 5, pp. 835–842, 1952.Google Scholar
  26. 26.
    A.L. McWhorter, “1/f Noise and Germanium Surface Properties,” in Sem.Surf.Phys. RH Kingston (Univ Penn Press), 1957.Google Scholar
  27. 27.
    M.J. Kirton and M.J. Uren, “Noise in Solid-State Microstructures: A New Perspective on Individual Defects, Interface States, and Low-Frequency (1/f) Noise,” Adv.Phys., vol. 38, no. 4, pp. 367–486, 1989.CrossRefGoogle Scholar
  28. 28.
    M. Masuduzzaman, A.E. Islam, and M.A. Alam, “Exploring the Capability of Multifrequency Charge Pumping in Resolving Location and Energy Levels of Traps Within Dielectric,” IEEE Elect.Dev.Let., vol. 55, no. 12, pp. 3421–3431, 2008.CrossRefGoogle Scholar
  29. 29.
    A. Avellan, D. Schroeder, and W. Krautschneider, “Modeling Random Telegraph Signals in the Gate Current of Metal-Oxide-Semiconductor Field Effect Transistors after Oxide Breakdown,” J.Appl.Phys., vol. 94, no. 1, pp. 703–708, 2003.CrossRefGoogle Scholar
  30. 30.
    M. Isler and D. Liebig, Phys.Rev.B, vol. 61, no. 11, pp. 7483–7488, 2000.Google Scholar
  31. 31.
    N. Zanolla, D. Siprak, P. Baumgartner, E. Sangiorgi, and C. Fiegna, “Measurement and Simulation of Gate Voltage Dependence of RTS Emission and Capture Time Constants in MOSFETs,” in Ultimate Integration of Silicon, 2008, pp. 137–140.Google Scholar
  32. 32.
    R.R. Siergiej, M.H. White, and N.S. Saks, “Theory and Measurement of Quantization Effects on Si − SiO2 Interface Trap Modeling,” Sol.-St.Electr., vol. 35, no. 6, pp. 843–854, 1992.CrossRefGoogle Scholar
  33. 33.
    N.B. Lukyanchikova, M.V. Petrichuk, N.P. Garbar, E. Simoen, and C. Claeys, “Influence of the Substrate Voltage on the Random Telegraph Signal Parameters in Submicron n-Channel Metal-Oxide-Semiconductor Field-Effect Transistors under a Constant Inversion Charge Density,” Appl.Phys.A, vol. 70, no. 3, pp. 345–353, 2000.CrossRefGoogle Scholar
  34. 34.
    S. Makram-Ebeid and M. Lannoo, Phys.Rev.B, vol. 25, no. 10, pp. 6406–6424, 1982.Google Scholar
  35. 35.
    S.D. Ganichev, W. Prettl, and I.N. Yassievich, “Deep Impurity-Center Ionization by Far-Infrared Radiation,” Phys.Solid State, vol. 39, no. 1, pp. 1703–1726, 1997.CrossRefGoogle Scholar
  36. 36.
    S.D. Ganichev, I.N. Yassievich, V.I. Perel, H. Ketterl, and W. Prettl, Phys.Rev.B, vol. 65, pp. 085203, 2002.Google Scholar
  37. 37.
    K. Huang and A. Rhys, “Theory of Light Absorption and Non-Radiative Transitions in F-Centres,” Proceedings of the Royal Society of London. Series A, vol. 204, pp. 406–423, 1950.CrossRefzbMATHGoogle Scholar
  38. 38.
    C.H. Henry and D.V. Lang, Phys.Rev.B, vol. 15, no. 2, pp. 989–1016, 1977.Google Scholar
  39. 39.
    K.V. Mikkelsen and M.A. Ratner, “Electron Tunneling in Solid-State Electron-Transfer Reactions,” Chemical Reviews, vol. 87, no. 1, pp. 113–153, 1987.CrossRefGoogle Scholar
  40. 40.
    Conley and Lenahan, “Electron Spin Resonance Evidence that E γ′ Centers Can Behave as Switching Traps,” IEEE Trans.Nucl.Sci., vol. 42, no. 6, pp. 1744–1749, 1995.Google Scholar
  41. 41.
    J.F. Conley Jr., P.M. Lenahan, A.J. Lelis, and T.R. Oldham, “Electron Spin Resonance Evidence for the Structure of a Switching Oxide Trap: Long Term Structural Change at Silicon Dangling Bond Sites in SiO2,” Appl.Phys.Lett., vol. 67, no. 15, pp. 2179–2181, 1995.CrossRefGoogle Scholar
  42. 42.
    A.J. Lelis and T.R. Oldham, “Time Dependence of Switching Oxide Traps,” IEEE Trans.Nucl.Sci., vol. 41, no. 6, pp. 1835–1843, 1994.CrossRefGoogle Scholar
  43. 43.
    M. Lax, “The Franck-Condon Principle and Its Application to Crystals,” Journ.Chem.Phys., vol. 20, no. 11, pp. 1752–1760, 1952.MathSciNetCrossRefGoogle Scholar
  44. 44.
    T.H. Keil, Phys.Rev., vol. 140, no. 2A, pp. A601–A617, 1965.Google Scholar
  45. 45.
    F. Schanovsky, O. Baumgartner, V. Sverdlov, and T. Grasser, “A Multi Scale Modeling Approach to Non-Radiative Multi Phonon Transitions at Oxide Defects in MOS Structures,” Journ. of Computational Electronics, vol. 11, no. 3, pp. 218–224, 2012.CrossRefGoogle Scholar
  46. 46.
    S. Datta, Quantum Transport — Atom to Transistor, Cambridge University Press, 2005.Google Scholar
  47. 47.
    M.O. Andersson, Z. Xiao, S. Norrman, and O. Engström, “Model Based on Trap-Assisted Tunneling for Two-Level Current Fluctuations in Submicrometer Metal-Silicon-Dioxide Diodes,” Phys.Rev.B, vol. 41, no. 14, pp. 9836–9842, 1990.CrossRefGoogle Scholar
  48. 48.
    P.E. Blöchl and J.H. Stathis, “Hydrogen Electrochemistry and Stress-Induced Leakage Current in Silica,” Phys.Rev.Lett., vol. 83, no. 2, pp. 372–375, 1999.CrossRefGoogle Scholar
  49. 49.
    P.E. Blöchl and J.H. Stathis, “Aspects of Defects in Silica Related to Dielectric Breakdown of Gate Oxides in MOSFETs,” Phys.B, vol. 273-274, pp. 1022–1026, 1999.Google Scholar
  50. 50.
    W.B. Fowler, J.K. Rudra, M.E. Zvanut, and F.J. Feigl, Phys.Rev.B, vol. 41, no. 12, pp. 8313–8317, 1990.Google Scholar
  51. 51.
    W. Goes and T. Grasser, “First-Principles Investigation on Oxide Trapping,” in Proc.SISPAD, 2007, pp. 157–160.Google Scholar
  52. 52.
    W. Goes and T. Grasser, “Charging and Discharging of Oxide Defects in Reliability Issues,” in Proc.IIRW, 2007, pp. 27–32.Google Scholar
  53. 53.
    W. Goes, M. Karner, V. Sverdlov, and T. Grasser, “Charging and Discharging of Oxide Defects in Reliability Issues,” IEEE Trans.Dev.Mater.Rel., vol. 8, no. 3, pp. 491–500, 2008.CrossRefGoogle Scholar
  54. 54.
    A. Alkauskas and A. Pasquarello, “Alignment of Hydrogen-Related Defect Levels at the Si − SiO2 Interface,” Phys.B Condens.Matter, vol. 401–402, pp. 546–549, 2007.Google Scholar
  55. 55.
    T. Grasser, “Stochastic Charge Trapping in Oxides: From Random Telegraph Noise to Bias Temperature Instabilities,” Microelectron.Reliab., vol. 52, no. 1, pp. 39–70, 2012.CrossRefGoogle Scholar
  56. 56.
    O.C. Ibe, Markov Processes for Stochastic Modeling, Academic Press, 2009.Google Scholar
  57. 57.
    M. Bina, O. Triebl, B. Schwarz, M. Karner, B. Kaczer, and T. Grasser, “Simulation of Reliability on Nanoscale Devices,” in Proc.SISPAD, 2012, pp. 109–112.Google Scholar
  58. 58.
    B. Kaczer, J. Franco, M. Toledano-Luque, Ph.J. Roussel, M.F. Bukhori, A. Asenov, B. Schwarz, M. Bina, T. Grasser, and G. Groeseneken, “The Relevance of Deeply-Scaled FET Threshold Voltage Shifts for Operation Lifetimes,” in Proc.IRPS, 2012.Google Scholar
  59. 59.
    A. Asenov, “Random Dopant-Induced Threshold Voltage Lowering and Fluctuations in Sub-0.1 μm MOSFET’s: A 3-D “Atomistic” Simulation Study,” IEEE Trans.Elect.Dev., vol. 45, no. 12, pp. 2505–2513, 1998.CrossRefGoogle Scholar
  60. 60.
    A. Mauri, N. Castellani, C.M. Compagnoni, A. Ghetti, P. Cappelletti, A.S. Spinelli, and A.L. Lacaita, “Impact of Atomistic Doping and 3D Electrostatics on the Variability of RTN Time Constants in Flash Memories,” in Proc.IEDM, 2011, pp. 17.1.1–17.1.4.Google Scholar
  61. 61.
    N. Sano, K. Matsuzawa, M. Mukai, and N. Nakayama, “On Discrete Random Dopant Modeling in Drift-Diffusion Simulations: Physical Meaning of “Atomistic” Dopants,” Microelectron.Reliab., vol. 42, no. 2, pp. 189–199, 2002.CrossRefGoogle Scholar
  62. 62.
    A. Asenov, G. Slavcheva, A.R. Brown, J.H. Davies, and S. Saini, “Increase in the Random Dopant-Induced Threshold Fluctuations and Lowering in Sub-100 nm MOSFETs due to Quantum Effects: a 3-D Density-Gradient Simulation Study,” IEEE Trans.Elect.Dev., vol. 48, no. 4, pp. 722–729, 2001.CrossRefGoogle Scholar
  63. 63.
    S.M. Amoroso (2013) Statistical study of bias temperature instabilities by means of 3D ‘atomistic’ simulation. In: T. Grasser (eds) Bias temperature instability for devices and circuits. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Wolfgang Goes
    • 1
    Email author
  • Franz Schanovsky
    • 1
  • Tibor Grasser
    • 1
  1. 1.Institute for Microelectronics, TU ViennaViennaAustria

Personalised recommendations