Skip to main content

Developing Next-Generation Predictive Models: Systems Biology Approach

  • Chapter
  • First Online:
Advances in Food Process Engineering Research and Applications

Part of the book series: Food Engineering Series ((FSES))

  • 4116 Accesses

Abstract

In the area of predictive microbiology, most models focus on simplicity and general applicability and can be classified as black box models with the main emphasis on the description of the macroscopic (population level) microbial behavior as a response to the environment. Their validity to describe pure cultures in simple, liquid media under moderate environmental conditions is widely illustrated and accepted. However, experiments have shown that extrapolation of these models outside the range of experimental validation is not allowed as such. In general, the applicability and robustness of existing models under a wider range of conditions and in more realistic situations can definitely be improved upon by unraveling the underlying mechanisms and incorporating intracellular (microscopic) information. Following a systems biology approach, the link between intracellular fluxes and extracellular measurements is established by techniques of metabolic flux analysis. The modeling approach presented in this chapter will lead to more accurate predictive models for more complex systems, such as cocultures and structured environments based on a top-down systems biology approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbuOun M, Suthers P, Jones G, Carter B, Saunders M, Maranas C, Woodward M, Anjum M (2009) Genome scale reconstruction of a Salmonella metabolic model. J Biol Chem 284(43):29,480–29488

    Article  CAS  Google Scholar 

  • Arsene F, Tomoyasu T, Bukaua B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3–9

    Article  CAS  Google Scholar 

  • Balsa-Canto E, Peifer M, Banga J, Timmer J, Fleck C (2008) Hybrid optimization method with general switching strategy for parameter estimation. BMC Syst Biol 2:26–34

    Article  Google Scholar 

  • Baranyi J (2002) Stochastic modelling of bacterial lag phase. Int J Food Microbiol 73:203–206

    Article  Google Scholar 

  • Baranyi J, Pin C (2001) A parallel study on modelling bacterial growth and survival curves. J Theor Biol 210:327–336

    Article  CAS  Google Scholar 

  • Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23:277–294

    Article  CAS  Google Scholar 

  • Baranyi J, Ross T, McMeekin TA, Roberts TA (1996) Effects of parametrization on the performance of emperical models used in ‘predictive microbiology’. Food Microbiol 13:83–91

    Article  Google Scholar 

  • Baranyi J, George S, Kutalik Z (2009) Parameter estimation for the distribution of single cell lag times. J Theor Biol 259:24–30

    Article  CAS  Google Scholar 

  • Baumrucker B, Renfro J, Biegler L (2008) MPEC problem formulations and solution strategies with chemical engineering applications. Comput Chem Eng 32(12):2903–2913

    Article  CAS  Google Scholar 

  • Betts J, Huffman W (2003) Large scale parameter estimation using sparse nonlinear programming methods. SIAM J Optimiz 14:223–244

    Article  Google Scholar 

  • Bock H (1983) Recent advances in parameter identification techniques for ODE. In: Deuflhard P, Hairer E (eds) Numerical treatment of inverse problems in differential and integral equations. Birkhäuser, Boston, pp 95–121

    Chapter  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. University Press, Cambridge

    Book  Google Scholar 

  • Boyle NR, Morgan JA (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 3:4

    Article  Google Scholar 

  • Brul S, Westerhoff H (2007) Systems biology and food science. In: Brul S, van Gerwen S, Zwietering M (eds) Modelling microorganisms in food. Woodhead, Cambridge, pp 250–288

    Chapter  Google Scholar 

  • Brul S, Mensonides FIC, Hellingwerf KJ, Teixeira de Mattos MJ (2008) Microbial systems biology: new frontiers open to predictive microbiology. Int J Food Microbiol 128(1):16–21

    Article  Google Scholar 

  • Buchanan RL, Whiting RC, Damert WC (1997) When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol 14:313–326

    Article  Google Scholar 

  • Burgard A, Maranas C (2002) Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol Bioeng 82:670–677

    Article  Google Scholar 

  • Chung H, Bang W, Drake M (2006) Stress response of Escherichia coli. Compr Rev Food Sci Food Saf 5(3):52–64

    Article  CAS  Google Scholar 

  • Covert M, Schilling C, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213:309–325

    Google Scholar 

  • Dens E, Van Impe J (2001) On the need for another type of predictive models in structured foods. Int J Food Microbiol 64:247–260

    Article  CAS  Google Scholar 

  • Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19(2):125–130

    Article  CAS  Google Scholar 

  • Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13(3):344–349

    Article  CAS  Google Scholar 

  • Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Google Scholar 

  • Geeraerd A, Herremans C, Cenens C, Van Impe J (1998) Application of artificial neural networks as a non-linear modular modeling technique to describe bacterial growth in chilled food products. Int J Food Microbiol 44:49–68

    Article  CAS  Google Scholar 

  • Geeraerd AH, Herremans CH, Van Impe JF (2000) Structural model requirements to describe microbial inactivation during a mild heat treatment. Int J Food Microbiol 59:185–209

    Article  CAS  Google Scholar 

  • Geeraerd AH, Valdramidis VP, Devlieghere F, Bernaert H, Debevere J, Van Impe JF (2004) Development of a novel approach for secondary modelling in predictive microbiology: incorporation of microbiological knowledge in black box polynomial modelling. Int J Food Microbiol 91:229–244

    Article  CAS  Google Scholar 

  • Gianchandani E, Chavali A, Papin J (2010) The application of flux balance analysis in systems biology. Wiley Interdiscip Rev Syst Biol Med 2(3):372–382

    Article  CAS  Google Scholar 

  • Haag J, Vande Wouwer A, Bogaerts P (2005) Dynamic modeling of complex biological systems: a link between metabolic and macroscopic description. Math Biosci 193:25–49

    Article  Google Scholar 

  • Hanly T, Henson M (2011) Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol Bioeng 108(2):376–385

    Article  CAS  Google Scholar 

  • Hardin H, van Schuppen J (2006) System reduction of nonlinear positive systems by linearization and truncation. Posit Syst 341:431–438

    Article  Google Scholar 

  • Holzhutter HG (2004) The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem 271:2905–2922

    Article  Google Scholar 

  • Joy J, Kremling A (2010) Study of the growth of Escherichia coli on mixed substrates using dynamic flux balance analysis. In: Proceedings of the 11th IFAC Symposium on computer applications in biotechnology, Leuven, 7–10 July 2010

    Google Scholar 

  • Kwiatkowska J, Matuszewska E, Kuczynska-Wisnik D, Laskowska E (2008) Aggregation of Escherichia coli proteins during stationary phase depends on glucose and oxygen availability. Res Microbiol 159:651–657

    Article  CAS  Google Scholar 

  • Liebermeister W, Bauer U, Klipp E (2005) Biochemical network models simplified by balanced truncation. FEBS J 272:4034–4043

    Article  CAS  Google Scholar 

  • Llaneras F, Pico J (2008) Stoichiometric modelling of cell metabolism. J Biosci Bioeng 105:1–11

    Article  CAS  Google Scholar 

  • Lohmann T, Bock H, Schlöder J (1992) Numerical methods for parameter estimation and optimal experiment design in chemical reaction systems. Ind Eng Chem Res 31:54–57

    Article  CAS  Google Scholar 

  • Mahadevan R, Edwards J, Doyle F (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331–1340

    Article  CAS  Google Scholar 

  • McKellar RC (1997) A heterogeneous population model for the analysis of bacterial growth kinetics. Int J Food Microbiol 36:179–186

    Article  CAS  Google Scholar 

  • McKellar R (2001) Development of a dynamic continuous-discrete-continuous model describing the lag phase of individual bacterial cells. J Appl Microbiol 90:407–413

    Article  CAS  Google Scholar 

  • McMeekin TA, Ross T (2002) Predictive microbiology: providing a knowledge-based framework for change management. Int J Food Microbiol 78:133–153

    Article  CAS  Google Scholar 

  • McMeekin TA, Olley J, Ratkowsky DA, Ross T (2002) Predictive microbiology: towards the interface and beyond. Int J Food Microbiol 73:395–407

    Article  CAS  Google Scholar 

  • McMeekin TA, Bowman J, McQuestin O, Mellefont L, Ross T, Tamplin M (2008) The future of predictive microbiology: strategic research, innovative applications and great expectations. Int J Food Microbiol 128:2–9

    Article  Google Scholar 

  • Mellefont LA, Ross T (2003) The effect of abrupt shifts in temperature on the lag phase duration of Escherichia coli and Klebsiella oxytoca. Int J Food Microbiol 83:295–305

    Article  CAS  Google Scholar 

  • Moles C, Mendes P, Banga J (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13:2467–2474

    Article  CAS  Google Scholar 

  • Nikolaou M, Tam VH (2005) A new modeling approach to the effect of antimicrobial agents on heterogeneous microbial populations. J Math Biol 52:154–182

    Article  Google Scholar 

  • Nyström T (2004) Stationary-phase physiology. Annu Rev Microbiol 58:161–181

    Article  Google Scholar 

  • Ou J, Wang L, Ding X, Du J, Zhang Y, Chen H, Xu A (2004) Stationary phase protein overproduction is a fundamental capability of Escherichia coli. Biochem Biophys Res Commun 314:174–180

    Article  CAS  Google Scholar 

  • Panagou EZ, Tassou CC, Saravanos EKA, Nychas GJE (2007) Application of neural networks to simulate the growth profile of lactic acid bacteria in green olive fermentation. J Food Prot 70:1909–1916

    Google Scholar 

  • Pichereau V, Hartke A, Auffray Y (2000) Starvation and osmotic stress induced multiresistances influence of extracellular compounds. Int J Food Microbiol 55:19–25

    Article  CAS  Google Scholar 

  • Poschet F, Vereecken KM, Geeraerd AH, Nicola¨ı BM, Van Impe JF (2005) Analysis of a novel class of predictive microbial growth models and application to coculture growth. Int J Food Microbiol 100:107–124

    Article  CAS  Google Scholar 

  • Pramanik J, Keasling JD (1997) Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 56(4):398–421

    Article  CAS  Google Scholar 

  • Prats C, Giro A, Ferrer J, Lopez D, Vives-Rego J (2008) Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition. J Theor Biol 252:56–68

    Article  Google Scholar 

  • Provost A, Bastin G, Agathos S, Schneider YJ (2006) Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells. Bioprocess Biosyst Eng 29:349–366

    Article  CAS  Google Scholar 

  • Ramakrishna R, Edwards JS, Mcculluch A, Palsson BO (2001) Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. Am J Physiol – Regulatory, Integrative Comp Physiol 280:R695–R704

    CAS  Google Scholar 

  • Ratkowsky DA, Olley J, McMeekin TA, Ball A (1982) Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149:1–5

    CAS  Google Scholar 

  • Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler RE (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226

    CAS  Google Scholar 

  • Rees CED, Dodd CER, Gibson PT, Booth IR, Stewart GSAB (1995) The significance of bacteria in stationary phase to food microbiology. Int J Food Microbiol 28:263–275

    Article  CAS  Google Scholar 

  • Rodriguez-Fernandez M, Mendes P, Banga J (2006) A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Biosystems 83(2–3):248–265

    Article  CAS  Google Scholar 

  • Ross T, Ratkowsky DA, Mellefont LA, McMeekin TA (2003) Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. Int J Food Microbiol 82:33–43

    Article  CAS  Google Scholar 

  • Rosso L, Lobry JR, Flandrois JP (1993) An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J Theor Biol 162:447–463

    Article  CAS  Google Scholar 

  • Rosso L, Lobry JR, Bajard S, Flandrois JP (1995) Convenient model to describe the combined effects of temperature and pH on microbial growth. Appl Environ Microbiol 61:610–616

    CAS  Google Scholar 

  • Sautour M, Dantigny P, Divies C, Bensoussan M (2001) A temperature-type model for describing the relationship between fungal growth and water activity. Int J Food Microbiol 67:63–69

    Article  CAS  Google Scholar 

  • Schauer K, Geginat G, Liang C, Goebel W, Dandekar T, Fuchs T (2010) Deciphering the intracellular metabolism of Listeria monocytogenes by mutant screening and modelling. BMC Genomics 11:573

    Article  Google Scholar 

  • Schilling C, Covert M, Famili I, Church G, Edwards J, Palsson B (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 184:4582–4593

    Article  CAS  Google Scholar 

  • Schittkowski K (2002) Numerical data fitting in dynamical systems: a practical introduction with applications and software, Applied optimization. Kluwer, Dordrecht

    Book  Google Scholar 

  • Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    Google Scholar 

  • Skandamis PN, Davies KW, McClure PJ, Koutsoumanis K, Tassou C (2002) A vitalistic approach for non-thermal inactivation of pathogens in traditional Greek salads. Food Microbiol 19:405–421

    Article  Google Scholar 

  • Standaert AR, Francois K, Devlieghere F, Debevere J, Van Impe JF, Geeraerd AH (2007) Modeling individual cell lag time distributions for Listeria monocytogenes. Risk Anal 27:241–254

    Article  Google Scholar 

  • Swinnen IAM, Bernaerts K, Gysemans K, Van Impe JF (2005) Quantifying microbial lag phenomena due to a sudden rise in temperature: a systematic macroscopic study. Int J Food Microbiol 100:85–96

    Article  CAS  Google Scholar 

  • Theys TE, Geeraerd AH, Devlieghere F, Van Impe JF (2009) Extracting information on the evolution of living-and dead-cell fractions of Salmonella Typhimurium colonies in gelatin gels based on microscopic images and plate-count data. Lett Appl Microbiol 49:39–45

    Article  CAS  Google Scholar 

  • Tjoa I, Biegler L (1991) Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems. Ind Eng Chem Res 30:376–385

    Article  CAS  Google Scholar 

  • Vadasz P, Vadasz AS (2007) Biological implications from an autonomous version of Baranyi and Roberts growth model. Int J Food Microbiol 114:357–365

    Article  Google Scholar 

  • Van Derlinden E, Bernaerts K, Van Impe JF (2009) Unraveling E. coli dynamics close to the maximum growth temperature through heterogeneous modeling. Lett Appl Microbiol 49(6):659–665

    Article  Google Scholar 

  • Van Derlinden E, Bernaerts K, Van Impe J (2010) Quantifying the heterogeneous heat response of E. coli under dynamic temperatures. J Appl Microbiol 108(4):1123–1135

    Article  Google Scholar 

  • Van Impe JF, Poschet F, Geeraerd AH, Vereecken KM (2005) Towards a novel class of predictive microbial growth models. Int J Food Microbiol 100:97–105

    Article  Google Scholar 

  • Varma A, Boesch B, Palsson B (1993) Biochemical production capabilities of Escherichia coli. Biotechnol Bioeng 42:59–73

    Article  CAS  Google Scholar 

  • Yuk HG, Marshall DL (2003) Heat adaptation alters Escherichia coli O157:H7 membrane lipid composition and verotoxin production. Appl Environ Microbiol 69(9):5115–5119

    Article  CAS  Google Scholar 

  • Zagaris A, Kaper H, Kaper T (2004) Analysis of the computational singular perturbation reduction method for chemical kinetics. J Nonlinear Sci 14:59–91

    Article  CAS  Google Scholar 

  • Zinser ER, Kolter R (2004) Escherichia coli evolution during stationary phase. Res Microbiol 155:328–336

    Article  CAS  Google Scholar 

  • Zobeley J, Lebiedz D, Kammerer J, Ishmurzin A, Kummer U (2005) A new time dependent complexity reduction method for biochemical systems. Trans Comput Syst Biol vol LNBI 3880:90–110

    Article  Google Scholar 

  • Zwietering M, Jongenburger I, Rombouts F, van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by Project PFV/10/002 (Center of Excellence OPTEC Optimization in Engineering) and OT/10/035 of the KU Leuven Research Fund, Project KP/09/005 (SCORES4CHEM) of the KU Leuven Industrial Research Fund, Project FWOG-08-00360 of the Research Foundation-Flanders, and the Belgian Program on Interuniversity Poles of Attraction, initiated by the Belgian Federal Science Policy Office. J.F. Van Impe holds the chair in Safety Engineering sponsored by the Belgian Chemistry and Life Sciences Federation Essenscia. D. Vercammen was supported by a doctoral grant of the Agency for Innovation through Science and Technology (IWT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Van Impe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vercammen, D., Van Derlinden, E., Logist, F., Van Impe, J.F. (2013). Developing Next-Generation Predictive Models: Systems Biology Approach. In: Yanniotis, S., Taoukis, P., Stoforos, N., Karathanos, V. (eds) Advances in Food Process Engineering Research and Applications. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7906-2_27

Download citation

Publish with us

Policies and ethics