Skip to main content

Natural Variation and Sequencing-Based Genetics Studies

  • Chapter
  • First Online:
Genetics and Genomics of Rice

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 5))

  • 3228 Accesses

Abstract

Rice is one of the most important crops in the world. During the last few years, genetic studies with a high-quality rice reference genome sequence have greatly facilitated genetic mapping and positional cloning of many genes underlying agronomically important traits in rice. Recently, several new methods have been developed to comprehensively dissect naturally occurring variation in rice. In this chapter, we begin by addressing the utility of the second-generation sequencing technology in the rice genetics and genomics researches. We then discuss the genetic diversity in rice. We presented the tools for sequencing-based genotyping and genome-wide association study (GWAS) and summarized accompanied important advances that have been achieved in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  2. Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  3. Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  4. Lister R, O’Malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  PubMed  CAS  Google Scholar 

  5. Schneeberger K, Ossowski S, Lanz C et al (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551

    Article  PubMed  CAS  Google Scholar 

  6. Atwell S, Huang YS, Vilhjalmsson BJ et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    Article  PubMed  CAS  Google Scholar 

  7. Abe A, Kosugi S, Yoshida K et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  PubMed  CAS  Google Scholar 

  8. Schneeberger K, Weigel D (2011) Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 16:282–288

    Article  PubMed  CAS  Google Scholar 

  9. Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Genome Biol 10:107

    Article  PubMed  Google Scholar 

  10. Feng Q, Zhang Y, Hao P et al (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320

    Article  PubMed  CAS  Google Scholar 

  11. Sasaki T, Matsumoto T, Yamamoto K et al (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316

    Article  PubMed  CAS  Google Scholar 

  12. Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14:1812–1819

    Article  PubMed  CAS  Google Scholar 

  13. Shen YJ, Jiang H, Jin JP et al (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135:1198–1205

    Article  PubMed  CAS  Google Scholar 

  14. Xu X, Liu X, Ge S et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111

    Article  CAS  Google Scholar 

  15. He Z, Zhai W, Wen H et al (2011) Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet 7:9

    Google Scholar 

  16. Gan X, Stegle O, Behr J et al (2011) Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477(7365):419–23

    Article  PubMed  CAS  Google Scholar 

  17. Zhou G, Chen Y, Yao W et al (2012) Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A 109(39):15847–15852

    Article  PubMed  CAS  Google Scholar 

  18. Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  PubMed  CAS  Google Scholar 

  19. Zhao Q, Huang X, Lin Z, Han B (2010) SEG-Map: a novel software for genotype calling and genetic map construction from next-generation sequencing. Rice 3:98–102

    Article  Google Scholar 

  20. Xie W, Feng Q, Yu H et al (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci U S A 107:10578–10583

    Article  PubMed  CAS  Google Scholar 

  21. Xu J, Zhao Q, Du P et al (2010) Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genomics 11:656

    Article  PubMed  CAS  Google Scholar 

  22. Wang L, Wang A, Huang X et al (2011) Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor Appl Genet 122:327–340

    Article  PubMed  Google Scholar 

  23. Yu H, Xie W, Wang J et al (2011) Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 6(3):e17595

    Article  PubMed  CAS  Google Scholar 

  24. Zou G, Zhai G, Feng Q et al (2012) Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot 63:5451–5462

    Article  PubMed  CAS  Google Scholar 

  25. McNally KL, Childs KL, Bohnert R et al (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci U S A 106:12273–12278

    Article  PubMed  CAS  Google Scholar 

  26. Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GR (2011) Low-coverage sequencing: implications for design of complex trait association studies. Genome Res 21:940–951

    Article  PubMed  CAS  Google Scholar 

  27. Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888

    Article  PubMed  CAS  Google Scholar 

  28. Huang X, Wei X, Sang T et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  PubMed  CAS  Google Scholar 

  29. Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    CAS  Google Scholar 

  30. Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457

    Article  PubMed  CAS  Google Scholar 

  31. Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 16:319–326

    Article  PubMed  CAS  Google Scholar 

  32. Zhao K, Tung CW, Eizenga GC et al (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    Article  PubMed  Google Scholar 

  33. Huang X, Zhao Y, Wei X et al (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39

    Article  Google Scholar 

  34. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  PubMed  CAS  Google Scholar 

  35. Yu J, Pressoir G, Briggs WH et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  36. Kang HM, Sul JH, Service SK et al (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354

    Article  PubMed  CAS  Google Scholar 

  37. Zhang Z, Ersoz E, Lai CQ et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  PubMed  CAS  Google Scholar 

  38. Korte A, Vilhjalmsson BJ, Segura V, Platt A, Long Q, Nordborg M (2012) A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nat Genet 44:1066–1071

    Article  PubMed  CAS  Google Scholar 

  39. Segura V, Vilhjalmsson BJ, Platt A et al (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44:825–830

    Article  PubMed  CAS  Google Scholar 

  40. Myles S, Peiffer J, Brown PJ et al (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  PubMed  CAS  Google Scholar 

  41. Fujita M, Horiuchi Y, Ueda Y et al (2010) Rice expression atlas in reproductive development. Plant Cell Physiol 51:2060–2081

    Article  PubMed  CAS  Google Scholar 

  42. Wang L, Xie W, Chen Y et al (2010) A dynamic gene expression atlas covering the entire life cycle of rice. Plant J 61:752–766

    Article  PubMed  CAS  Google Scholar 

  43. Zhang Q, Li J, Xue Y, Han B, Deng XW (2008) Rice 2020: a call for an international coordinated effort in rice functional genomics. Mol Plant 1:715–719

    Article  PubMed  CAS  Google Scholar 

  44. Jeong D-H, An S, Park S et al (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45:123–132

    Article  PubMed  CAS  Google Scholar 

  45. Zhang J, Guo D, Chang Y et al (2007) Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J 49:947–959

    Article  PubMed  CAS  Google Scholar 

  46. Sallaud C, Gay C, Larmande P et al (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–464

    Article  PubMed  CAS  Google Scholar 

  47. Lu T, Yu S, Fan D et al (2008) Collection and comparative analysis of 1888 full-length cDNAs from wild rice Oryza rufipogon Griff. W1943. DNA Res 15:285–295

    Article  PubMed  CAS  Google Scholar 

  48. Wing RA et al (2005) The oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol Biol 59(1):53–62

    Article  PubMed  CAS  Google Scholar 

  49. Huang X, Kurata N, Wei X et al (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490(7421):497–501

    Article  PubMed  CAS  Google Scholar 

  50. Tang H, Sezen U, Paterson AH (2009) Domestication and plant genomes. Curr Opin Plant Biol 13:1–7

    Article  Google Scholar 

Download references

Acknowledgments

We thank our colleagues for contributing to the rice genomics projects. Rice functional genomics projects in our lab are supported by the National Natural Science Foundation of China (31121063) to B.H., the Ministry of Science and Technology of China (2012AA10A302 & 2012AA10A304, 2011CB100205) to B.H. and X.H., and the Ministry of Agriculture of China (2011ZX08009-002 & 2011ZX08001-004) to B.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Han Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huang, X., Han, B. (2013). Natural Variation and Sequencing-Based Genetics Studies. In: Zhang, Q., Wing, R. (eds) Genetics and Genomics of Rice. Plant Genetics and Genomics: Crops and Models, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7903-1_3

Download citation

Publish with us

Policies and ethics