Tumor Immunotherapy by Utilizing a Double-Edged Sword, Chemokines

Chapter

Abstract

Both innate and adaptive immune responses have an essential role in protection against tumor cells. Various types of immune cells such as dendritic cells and lymphocytes contribute to the establishment of immune responses to tumor cells. Chemokines, a family consisting of more than 40 related chemoattractant proteins, have a crucial role in the control of the recruitment of immune cells needed for the induction and activation of tumor immunity. Based on these properties, several chemokines have been utilized in preclinical models to augment tumor immunity by enhancing the migration and activation of immune cells. Paradoxically, tumor tissues use chemokines to evade immunosurveillance by attracting immune suppressive cells. Moreover, chemokines can mediate survival and migration of tumor cells and promote new blood vessel formation, thereby leading to tumor progression and metastasis. Thus, a number of therapeutic strategies have been proposed to target chemokines, in order to reduce tumor progression and metastasis, although these strategies have not yet been translated to clinical situations. Here, we will briefly summarize the preclinical results obtained by using and/or targeting chemokines to combat tumors and discuss the potential efficacy of these methods.

Keywords

Migration Lymphoma Adenocarcinoma Cysteine Heparin 

References

  1. 1.
    Moser B et al (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25(2):75–84PubMedGoogle Scholar
  2. 2.
    Fernandez EJ, Lolis E (2002) Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 42:469–499PubMedGoogle Scholar
  3. 3.
    Jansma A, Handel TM, Hamel DJ (2009) Homo- and hetero-oligomerization of chemokines. Methods Enzymol 461:31–50PubMedGoogle Scholar
  4. 4.
    Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12(2):121–127PubMedGoogle Scholar
  5. 5.
    Vandercappellen J, Van Damme J, Struyf S (2008) The role of CXC chemokines and their receptors in caner. Cancer Lett 267(2):226–244PubMedGoogle Scholar
  6. 6.
    Mantovani A, Bonecchi R, Locati M (2006) Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol 6(12):907–918PubMedGoogle Scholar
  7. 7.
    Nomiyama H, Osada N, Yoshie O (2010) The evolution of mammalian chemokine genes. Cytokine Growth Factor Rev 21(4):253–262PubMedGoogle Scholar
  8. 8.
    Moepps B et al (2006) A homolog of the human chemokine receptor CXCR1 is expressed in mouse. Mol Immunol 43(7):897–914PubMedGoogle Scholar
  9. 9.
    Su S-B et al (1996) Preparation of specific antagonizing polyclonal antibodies to a C–C chemokine receptor, CCR1 and determination of its distribution of various types of leukocytes. J Leukoc Biol 60(5):658–666PubMedGoogle Scholar
  10. 10.
    Allen SJ, Crown SE, Handel TM (2007) Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 25:787–820PubMedGoogle Scholar
  11. 11.
    Neel NF et al (2005) Chemokine receptor internalization and intracellular trafficking. Cytokine Growth Factor Rev 16(6):637–658PubMedCentralPubMedGoogle Scholar
  12. 12.
    Servant G et al (2000) Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287(5455):1037–1040PubMedCentralPubMedGoogle Scholar
  13. 13.
    Ridley AJ et al (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709PubMedGoogle Scholar
  14. 14.
    Druey KM et al (1996) Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature 379(6567):742–746PubMedGoogle Scholar
  15. 15.
    Shi GX et al (2002) RGS13 regulates germinal center B lymphocytes responsiveness to CXC chemokine ligand (CXCL)12 and CXCL13. J Immunol 169(5):2507–2515PubMedGoogle Scholar
  16. 16.
    Le Y et al (2005) CXC chemokine ligand 12-induced focal adhesion kinase activation and segregation into membrane domains is modulated by regulator of G protein signaling 1 in pro-B cells. J Immunol 174(5):2582–2590PubMedGoogle Scholar
  17. 17.
    Mellado M et al (1998) The chemokine MCP-1 triggers tyrosine phosphorylation of the CCR2B receptor and the JAK2/STAT3 pathway. J Immunol 161(2):805–813PubMedGoogle Scholar
  18. 18.
    Rodríguez-Frade JM et al (1999) The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc Natl Acad Sci USA 96(7):3628–3633PubMedGoogle Scholar
  19. 19.
    Breitwieser GE (2004) G protein-coupled receptor oligomerization: implications for G protein activation and cell signaling. Circ Res 94(1):17–27PubMedGoogle Scholar
  20. 20.
    Hernanz-Falcón P et al (2004) Identification of amino acid residues crucial for chemokine receptor dimerization. Nat Immunol 5(2):216–223PubMedGoogle Scholar
  21. 21.
    Rodríguez-Frade JM, Mellado M, Martínez-A C (2001) Chemokine receptor dimerization: two are better than one. Trends Immunol 22(11):612–617PubMedGoogle Scholar
  22. 22.
    Mellado M et al (2001) Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J 20(10):2497–2507PubMedGoogle Scholar
  23. 23.
    Sohy D, Parmentier M, Springael JY (2007) Allosteric transinhibition by specific antagonists in CCR2/CXCR4 heterodimers. J Biol Chem 282(41):30062–30069PubMedGoogle Scholar
  24. 24.
    Knall C et al (1996) Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J Biol Chem 271(5):2832–2838PubMedGoogle Scholar
  25. 25.
    Barbero S et al (2003) Stromal cell-derived factor 1α stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 63(8):1969–1974PubMedGoogle Scholar
  26. 26.
    Porcile C et al (2005) Stromal cell-derived factor-1α (SDF-1α/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation. Exp Cell Res 308(2):241–253PubMedGoogle Scholar
  27. 27.
    Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54(8):721–728PubMedGoogle Scholar
  28. 28.
    Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277. doi: 10.1038/nrc3258 PubMedCentralPubMedGoogle Scholar
  29. 29.
    Sozzani S (2005) Dendritic cell trafficking: more than just chemokines. Cytokine Growth Factor Rev 16(6):581–592PubMedGoogle Scholar
  30. 30.
    Förster R et al (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99(1):23–33PubMedGoogle Scholar
  31. 31.
    Qu C et al (2004) Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med 200(10):1231–1241PubMedCentralPubMedGoogle Scholar
  32. 32.
    Martin-Fontecha A et al (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198(4):615–621PubMedCentralPubMedGoogle Scholar
  33. 33.
    Gooden MJ et al (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105(1):93–103. doi: 10.1038/bjc.2011.189 PubMedCentralPubMedGoogle Scholar
  34. 34.
    Pan J et al (2006) CXCR3/CXCR3 ligand biological axis impairs RENCA tumor growth by a mechanism of immunoangiostasis. J Immunol 176(3):1456–1464PubMedGoogle Scholar
  35. 35.
    Musha H et al (2005) Selective infiltration of CCR5(+)CXCR3(+) T lymphocytes in human colorectal carcinoma. Int J Cancer 116(6):949–956PubMedGoogle Scholar
  36. 36.
    Ohtani H et al (2009) Abundant expression of CXCL9 (Mig) by stromal cells that include dendritic cells and accumulation of CXCR3+ T cells in lymphocyte-rich gastric cancer. J Pathol 217(1):21–31PubMedGoogle Scholar
  37. 37.
    Muthuswamy R et al (2012) NF-κB hyperactivation in tumor tissues allows tumor-selective reprogramming of the chemokine microenvironment to enhance the recruitment of cytolytic T effector cells. Cancer Res 72(15):3735–3743PubMedCentralPubMedGoogle Scholar
  38. 38.
    Ohta M et al (2005) The high expression of fractalkine results in a better prognosis in colorectal cancer patients. Int J Oncol 26(1):41–47PubMedGoogle Scholar
  39. 39.
    Hojo S et al (2007) High level expression of chemokine CXCL16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Res 67(10):4725–4731PubMedGoogle Scholar
  40. 40.
    Vivier E et al (2008) Functions of natural killer cells. Nat Immunol 9(5):503–510PubMedGoogle Scholar
  41. 41.
    Walzer T, Vivier E (2011) G-protein-coupled receptors in control of natural killer cell migration. Trends Immunol 32(10):486–492PubMedGoogle Scholar
  42. 42.
    Halama N et al (2011) Natural killer cells are scarce in colorectal carcinoma tissue despite high levels of chemokines and cytokines. Clin Cancer Res 17(4):678–689PubMedGoogle Scholar
  43. 43.
    Iida N et al (2008) Tumor cells apoptosis induces tumor-specific immunity in a CC chemokine receptor 1- and 5-dependent manner in mice. J Leukoc Biol 84(4):1001–1010PubMedGoogle Scholar
  44. 44.
    Zhang Y et al (2004) Mobilization of dendritic cell precursors into the circulation by administration of MIP-1α in mice. J Natl Cancer Inst 96(3):201–209PubMedGoogle Scholar
  45. 45.
    Iida N et al (2010) Antitumor effect after radiofrequency ablation of murine hepatoma is augmented by an active variant of CC chemokine ligand 3/macrophage inflammatory proein-1α. Cancer Res 70(16):6556–6566PubMedGoogle Scholar
  46. 46.
    Sharma S et al (2001) Secondary lymphoid organ chemokine reduces pulmonary tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res 61(17):6406–6412PubMedGoogle Scholar
  47. 47.
    Hillinger S et al (2006) CCL19 reduces tumour burden in a model of advanced lung cancer. Br J Cancer 94(7):1029–1034PubMedCentralPubMedGoogle Scholar
  48. 48.
    Chang AE et al (2002) A phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer. Clin Cancer Res 8(4):1021–1032PubMedGoogle Scholar
  49. 49.
    Kirk CJ et al (2001) T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy. Cancer Res 61(5):2062–2070PubMedGoogle Scholar
  50. 50.
    Kirk CJ, Hartigan-O'Connor D, Mulé JJ (2001) The dynamics of the T-cell antitumor response: chemokine-secreting dendritic cells can prime tumor-reactive T cells extranodally. Cancer Res 61(24):8794–8802PubMedGoogle Scholar
  51. 51.
    Baratelli F, Takedatsu H, Hazra S, Peebles K, Luo J, Kurimoto PS, Zeng G, Batra RK, Sharma S, Dubinett SM, Lee JM (2008) Pre-clinical characterization of GMP grade CCL21-gene modified dendritic cells for application in a phase I trial in non-small cell lung cancer. J Transl Med 6:38PubMedCentralPubMedGoogle Scholar
  52. 52.
    Yang SC et al (2004) Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clin Cancer Res 10(8):2891–2901PubMedGoogle Scholar
  53. 53.
    Groom JR, Luster AD (2011) CXCR3 in T cell function. Exp Cell Res 317(5):620–631PubMedCentralPubMedGoogle Scholar
  54. 54.
    Luster AD, Leder P (1993) IP-10, a –C–X–C– chemokine, elicits a potent thymus-dependent antitumor response in vivo. J Exp Med 178(3):1057–1065PubMedGoogle Scholar
  55. 55.
    Yang X et al (2006) Targeted in vivo expression of IFN-γ-inducible protein 10 induces specific antitumor activity. J Leukoc Biol 80(6):1434–1444PubMedGoogle Scholar
  56. 56.
    Hensbergen PJ et al (2005) The CXCR3 targeting chemokine CXCL11 has potent antitumor activity in vivo involving attraction of CD8+ T lymphocytes but not inhibition of angiogenesis. J Immunother 28(4):343–351PubMedGoogle Scholar
  57. 57.
    Matsushima K et al (1989) Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med 169(4):1485–1490PubMedGoogle Scholar
  58. 58.
    Rollins BJ, Sunday ME (1991) Suppression of tumor formation in vivo by expression of the JE gene in malignant cells. Mol Cell Biol 11(6):3125–3131PubMedCentralPubMedGoogle Scholar
  59. 59.
    Nokihara H et al (2000) Natural killer cell-dependent suppression of systemic spread of human lung adenocarcinoma cells by monocyte chemoattractant protein-1 gene transfection in severe combined immunodeficient mice. Cancer Res 60(24):7002–7007PubMedGoogle Scholar
  60. 60.
    Tsuchiyama T, Nakamoto Y, Sakai Y, Marukawa Y, Kitahara M, Mukaida N, Kaneko S (2007) Prolonged, NK cell-mediated antitumor effects of suicide gene therapy combined with monocyte chemoattractant protein-1 against hepatocellular carcinoma. J Immunol 178(1):574–583PubMedGoogle Scholar
  61. 61.
    Lavergne E et al (2003) Fractalkine mediates natural killer-dependent antitumor responses in vivo. Cancer Res 63(21):7468–7474PubMedGoogle Scholar
  62. 62.
    Tang L et al (2007) Gene therapy with CX3CL1/Fractalkine induces antitumor immunity to regress effectively mouse hepatocellular carcinoma. Gene Ther 14(16):1226–1234PubMedGoogle Scholar
  63. 63.
    Zeng Y et al (2007) Fractalkine (CX3CL1)- and interleukin-2-enriched neuroblastoma microenvironment induces eradication of metastases mediated by T cells and natural killer cells. Cancer Res 67(5):2331–2338PubMedGoogle Scholar
  64. 64.
    Iga M et al (2007) Single CX3CL1-Ig DNA administration enhances T cell priming in vivo. Vaccine 25(23):4554–4563PubMedGoogle Scholar
  65. 65.
    van den Berg A, Visser L, Poppema S (1999) High expression of the CC chemokine TARC in Reed-Sternberg cells. A possible explanation for the characteristic T-cell infiltrate in Hodgkin’s lymphoma. Am J Pathol 154(6):1685–1691PubMedGoogle Scholar
  66. 66.
    Di Stasi A et al (2009) T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113(25):6392–6402PubMedGoogle Scholar
  67. 67.
    Moon EK et al (2011) Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res 17(14):4719–4730PubMedCentralPubMedGoogle Scholar
  68. 68.
    Sarnaik AA, Weber JS (2009) Recent advances using anti-CTLA-4 for the treatment of melanoma. Cancer J 15(3):169–173PubMedGoogle Scholar
  69. 69.
    Ribas A (2012) Tumor immunotherapy directed at PD-1. N Engl J Med 366(26):2517–2519PubMedGoogle Scholar
  70. 70.
    Sica A, Allavena P, Mantovani A (2008) Caner related inflammation: the macrophage connection. Cancer Lett 267(2):204–215PubMedGoogle Scholar
  71. 71.
    Bailey C et al (2007) Chemokine expression is associated with the accumulation of tumour associated macrophages (TAMs) and progression in human colorectal cancer. Clin Exp Metastasis 24(2):121–130PubMedGoogle Scholar
  72. 72.
    Kim SJ et al (2009) Circulating monocytes expressing CD31: implications for acute and chronic angiogenesis. Am J Pathol 174(5):1972–1980PubMedGoogle Scholar
  73. 73.
    Ruffell B, Affar NI, Coussens LM (2012) Differential macrophage programming in the tumor microenvironment. Trends Immunol 33(3):119–126PubMedCentralPubMedGoogle Scholar
  74. 74.
    Curiel TJ et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949PubMedGoogle Scholar
  75. 75.
    Kryczek I et al (2006) B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203(4):871–881PubMedCentralPubMedGoogle Scholar
  76. 76.
    Loberg RD et al (2007) Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor progression in vivo. Cancer Res 67(19):9417–9424PubMedGoogle Scholar
  77. 77.
    Popivanova BK et al (2009) Blockade of a chemokine, CCL2, reduces chronic colitis-associated carcinogenesis in mice. Cancer Res 69(19):7884–7892PubMedGoogle Scholar
  78. 78.
    Qian B-Z et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–226. doi: 10.1038/nature10138 PubMedCentralPubMedGoogle Scholar
  79. 79.
    Condamine T, Gabrilovich DI (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32(1):19–25PubMedCentralPubMedGoogle Scholar
  80. 80.
    Huang B et al (2007) CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett 252(1):86–92PubMedGoogle Scholar
  81. 81.
    Lesokhin AM et al (2012) Monocytic CCR2+ myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer Res 72(4):876–886PubMedCentralPubMedGoogle Scholar
  82. 82.
    Sawanobori Y (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111(12):5457–5466PubMedGoogle Scholar
  83. 83.
    Brandau S et al (2011) Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol 89(2):311–317PubMedGoogle Scholar
  84. 84.
    Yang L et al (2008) Abrogation of TGF β signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13(1):23–35PubMedCentralPubMedGoogle Scholar
  85. 85.
    Obermajer N et al (2011) PGE2-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 71(24):7463–7470PubMedGoogle Scholar
  86. 86.
    Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127(4):759–767PubMedGoogle Scholar
  87. 87.
    Facciabene A et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475(7355):226–230. doi: 10.1038/nature10169 PubMedGoogle Scholar
  88. 88.
    Fridlender ZG et al (2010) CCL2 blockade augments caner cancer immunotherapy. Cancer Res 70(1):109–118PubMedCentralPubMedGoogle Scholar
  89. 89.
    Yoshie O et al (2002) Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood 99(5):1505–1511PubMedGoogle Scholar
  90. 90.
    Ishida T, Ueda R (2011) Antibody therapy for Adult T-cell leukemia–lymphoma. Int J Hematol 94(5):443–452PubMedGoogle Scholar
  91. 91.
    Kitamura T et al (2007) SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat Genet 39(4):467–475PubMedGoogle Scholar
  92. 92.
    Kitamura T et al (2010) Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model. Proc Natl Acad Sci USA 107(29):13063–13068PubMedGoogle Scholar
  93. 93.
    Oppenheim JJ et al (1991) Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu Rev Immunol 9:617–648PubMedGoogle Scholar
  94. 94.
    Kitadai Y et al (2000) Regulation of disease-progression genes in human gastric carcinoma cells by interleukin-8. Clin Cancer Res 6(7):2735–2740PubMedGoogle Scholar
  95. 95.
    Wang B et al (2006) A growth-related oncogene/CXC chemokine receptor 2 autocrine loop contributes to cellular proliferation in esophageal cancer. Cancer Res 66(6):3071–3077PubMedGoogle Scholar
  96. 96.
    Singh S et al (2009) CXCR1 and CXCR2 enhances human melanoma tumourigenesis, growth and invasion. Br J Cancer 100(10):1638–1646PubMedCentralPubMedGoogle Scholar
  97. 97.
    Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16(11):2927–2931PubMedGoogle Scholar
  98. 98.
    Ghadjar P et al (2009) The chemokine CCL20 and its receptor CCR6 in human malignancy with focus on colorectal cancer. Int J Cancer 125(4):741–745PubMedGoogle Scholar
  99. 99.
    Darash-Yahana M et al (2009) The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers. PLoS One 4(8):e6695PubMedCentralPubMedGoogle Scholar
  100. 100.
    Murakami T et al (2003) Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J Exp Med 198(9):1337–1347PubMedCentralPubMedGoogle Scholar
  101. 101.
    Wang J et al (2008) Autocrine and paracrine chemokine receptor 7 activation in head and neck cancer: implications for therapy. J Natl Cancer Inst 100(7):502–512PubMedGoogle Scholar
  102. 102.
    Bertran E et al (2009) Role of CXCR4/SDF-1α in the migratory phenotype of hepatoma cells that have undergone epithelial-mesenchymal transition in response to the transforming growth factor-β. Cell Signal 21(11):1595–1606PubMedGoogle Scholar
  103. 103.
    Righi E et al (2011) CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer Res 71(16):522–5534Google Scholar
  104. 104.
    Messmer D et al (2011) Chronic lymphocytic leukemia cells receive RAF-dependent survival signals in response to CXCL12 that are sensitive to inhibition by sorafenib. Blood 117(3):882–889PubMedGoogle Scholar
  105. 105.
    Fernando RI et al (2011) IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res 71(15):5296–5306PubMedCentralPubMedGoogle Scholar
  106. 106.
    Kochetkova M, Kumar S, McColl SR (2009) Chemokine receptors CXCR4 and CCR7 promote metastasis by preventing anoikis in cancer cells. Cell Death Differ 16(5):664–673PubMedGoogle Scholar
  107. 107.
    Müller A et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56PubMedGoogle Scholar
  108. 108.
    Buonamici S et al (2009) CCR7 signaling as an essential regulator of CNS infiltration of T-cell leukaemia. Nature 459(7249):1000–1004PubMedCentralPubMedGoogle Scholar
  109. 109.
    Amersi FF et al (2008) Activation of CCR9/CCL25 in cutaneous melanoma mediates preferential metastasis to the small intestine. Clin Cancer Res 14(3):638–645PubMedCentralPubMedGoogle Scholar
  110. 110.
    Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741PubMedGoogle Scholar
  111. 111.
    Zhang Y et al (2012) SDF-1/CXCR4 axis in myelodysplastic syndromes: correlation with angiogenesis and apoptosis. Leuk Res 36(3):281–286PubMedGoogle Scholar
  112. 112.
    Shields JD et al (2007) Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11(6):526–538PubMedGoogle Scholar
  113. 113.
    Zhang XH et al (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16(1):67–78PubMedCentralPubMedGoogle Scholar
  114. 114.
    Fidler IJ, Ellis EM (1994) The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79(2):185–188PubMedGoogle Scholar
  115. 115.
    Keeley EC, Mehrad B, Strieter RM (2011) Chemokines as mediators of tumor angiogenesis and neovascularization. Exp Cell Res 317(5):685–690PubMedCentralPubMedGoogle Scholar
  116. 116.
    Arenberg DA et al (1996) Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest 97(12):2792–2802PubMedCentralPubMedGoogle Scholar
  117. 117.
    Kryczek I et al (2007) Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol 292(3):C987–C995PubMedGoogle Scholar
  118. 118.
    Gálvez BG et al (2005) Membrane type 1-matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/ccl2 and interleukin-8/CXCL8 in endothelial cells during angiogenesis. J Biol Chem 280(2):1292–1298PubMedGoogle Scholar
  119. 119.
    Salcedo R et al (2001) Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol 166(12):7571–7578PubMedGoogle Scholar
  120. 120.
    Strasly M et al (2004) CCL16 activates an angiogenic program in vascular endothelial cells. Blood 103(1):40–49PubMedGoogle Scholar
  121. 121.
    Rehman J et al (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107(8):1164–1169PubMedGoogle Scholar
  122. 122.
    Maione TE, Gray GS, Petro J, Hunt AJ, Donner AL, Bauer SI, Carson HF, Sharpe RJ (1990) Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247(4938):77–79PubMedGoogle Scholar
  123. 123.
    Romagnani P et al (2001) Cell-cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest 107(1):53–63PubMedCentralPubMedGoogle Scholar
  124. 124.
    Addison CL et al (2000) The CXC chemokine, monokine induced by interferon-gamma, inhibits non-small cell lung carcinoma tumor growth and metastasis. Hum Gene Ther 11(2):247–261PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Naofumi Mukaida
    • 1
  • So-ichiro Sasaki
    • 1
  • Tomohisa Baba
    • 1
  1. 1.Division of Molecular Bioregulation, Cancer Research InstituteKanazawa UniversityKanazawaJapan

Personalised recommendations