In Vitro Three-Dimensional Cancer Culture Models

  • Waseem Asghar
  • Hadi Shafiee
  • Pu Chen
  • Savas Tasoglu
  • Sinan Guven
  • Umut Atakan Gurkan
  • Utkan Demirci
Chapter

Abstract

The efficacy of chemotherapy drug candidates is conventionally investigated using 2D cancer cell cultures and in vivo animal models. It is crucial to determine signaling pathways, controlling cell proliferation, metabolism, differentiation, and apoptosis functions, which are not optimal to investigate in the monolayer 2D cell culture models. Further, accurate investigation of tumor growth and therapeutic drug efficacy in murine models is challenging because of technical constraints of in vivo imaging and requires euthanizing the animals. Therefore, alternative in vitro cancer models are needed to facilitate the transition of new chemotherapeutic drug candidates from bench to clinical trials. Recent technological advances in microfabrication and bioengineering have provided tools to develop in vitro 3D cancer models that mimic natural tissue microenvironment. This chapter highlights recent developments in in vitro 3D cancer models and their applications for studying the efficacy of the chemotherapeutic drug candidates. We discuss the methods and technologies to develop 3D cancer models including embedded and overlay cell culture, suspension culture, bioprinting, hanging drop, microgravity bioreactor, and magnetic levitation. We also discuss the extracellular matrix components and synthetic scaffolds used in vitro 3D cancer models.

References

  1. 1.
    Globocan 2008 (2010) International Agency for Research on Cancer (IARC), World Health Organization. http://globocan.iarc.fr/factsheets/populations/factsheet.asp?uno=900
  2. 2.
    Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1(1):46PubMedCentralPubMedGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedGoogle Scholar
  4. 4.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New YorkGoogle Scholar
  5. 5.
    Johansson N, Ahonen M, Kahari VM (2000) Matrix metalloproteinases in tumor invasion. Cell Mol Life Sci 57(1):5–15PubMedGoogle Scholar
  6. 6.
    Calmels TPG, Mattot V, Wernert N, Vandenbunder B, Stehelin D (1995) Invasive tumors induce c-ets1 transcription factor expression in adjacent stroma. Biol Cell 84(1–2):53–61PubMedGoogle Scholar
  7. 7.
    Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2(10):727–739PubMedGoogle Scholar
  8. 8.
    Hortobagyi GN (2004) Opportunities and challenges in the development of targeted therapies. In: Seminars in oncology. Elsevier, 31(3):21–27Google Scholar
  9. 9.
    Abbott A (2003) Cell culture: biology’s new dimension. Nature 424(6951):870–872PubMedGoogle Scholar
  10. 10.
    Wang F, Weaver VM, Petersen OW, Larabell CA, Dedhar S, Briand P, Lupu R, Bissell MJ (1998) Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci 95(25):14821–14826PubMedGoogle Scholar
  11. 11.
    Liu H, Radisky DC, Wang F, Bissell MJ (2004) Polarity and proliferation are controlled by distinct signaling pathways downstream of pi3-kinase in breast epithelial tumor cells. J Cell Biol 164(4):603–612PubMedGoogle Scholar
  12. 12.
    Weaver VM, Lelievre S, Lakins JN, Chrenek MA, Jones JCR, Giancotti F, Werb Z, Bissell MJ (2002) Beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2(3):205–216PubMedCentralPubMedGoogle Scholar
  13. 13.
    Durand RE, Olive PL (2001) Resistance of tumor cells to chemo-and radiotherapy modulated by the three-dimensional architecture of solid tumors and spheroids. Methods Cell Biol 64:211–233PubMedGoogle Scholar
  14. 14.
    Kerbel RS (1994) Impact of multicellular resistance on the survival of solid tumors, including micrometastases. Invasion Metastasis 14(1–6):50PubMedGoogle Scholar
  15. 15.
    Hauptmann S, Denkert C, Lohrke H, Tietze L, Ott S, Klosterhalfen B, Mittermayer C (1995) Integrin expression on colorectal tumor cells growing as monolayers, as multicellular tumor spheroids, or in nude mice. Int J Cancer 61(6):819–825PubMedGoogle Scholar
  16. 16.
    Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9(11):4227–4239PubMedGoogle Scholar
  17. 17.
    Richmond A, Su Y (2008) Mouse xenograft models vs gem models for human cancer therapeutics. Dis Model Mech 1(2–3):78–82PubMedCentralPubMedGoogle Scholar
  18. 18.
    Becher OJ, Holland EC (2006) Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res 66(7):3355–3359PubMedGoogle Scholar
  19. 19.
    Olive KP, Tuveson DA (2006) The use of targeted mouse models for preclinical testing of novel cancer therapeutics. Clin Cancer Res 12(18):5277–5287PubMedGoogle Scholar
  20. 20.
    Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7(9):654–658Google Scholar
  21. 21.
    Loudos G, Kagadis GC, Psimadas D (2011) Current status and future perspectives of in vivo small animal imaging using radiolabeled nanoparticles. Eur J Radiol 78(2):287–295PubMedGoogle Scholar
  22. 22.
    Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM (2011) Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem 399(1):3–27PubMedGoogle Scholar
  23. 23.
    Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC (2010) In vivo small animal imaging: current status and future prospects. Med Phys 37:6421PubMedGoogle Scholar
  24. 24.
    Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49(Suppl 2):113S–128SPubMedGoogle Scholar
  25. 25.
    Boehm T, Folkman J, Browder T, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390(6658):404–407PubMedGoogle Scholar
  26. 26.
    Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60(7):1878–1886PubMedGoogle Scholar
  27. 27.
    Eder JP Jr, Supko JG, Clark JW, Puchalski TA, Garcia-Carbonero R, Ryan DP, Shulman LN, Proper J, Kirvan M, Rattner B (2002) Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol 20(18):3772–3784PubMedGoogle Scholar
  28. 28.
    Breslin S, O’Driscoll L (2013) Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 18(5–6):240–249PubMedGoogle Scholar
  29. 29.
    Soares CP, Midlej V, Oliveira M, Benchimol M, Costa ML, Mermelstein C (2012) 2d and 3d-organized cardiac cells shows differences in cellular morphology, adhesion junctions, presence of myofibrils and protein expression. PLoS One 7(5):e38147PubMedCentralGoogle Scholar
  30. 30.
    Zhou S, Li F, Xiao J, Xiong W, Fang Z, Chen W, Niu P (2010) Isolation and identification of cancer stem cells from human osteosarcom by serum-free three-dimensional culture combined with anticancer drugs. J Huazhong Univ Sci Technolog Med Sci 30(1):81–84PubMedGoogle Scholar
  31. 31.
    Linde N, Gutschalk CM, Hoffmann C, Yilmaz D, Mueller MM (2012) Integrating macrophages into organotypic co-cultures: a 3d in vitro model to study tumor-associated macrophages. PLoS One 7(7):e40058PubMedCentralPubMedGoogle Scholar
  32. 32.
    Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW, Martin GR (1986) Basement membrane complexes with biological activity. Biochemistry 25(2):312–318PubMedGoogle Scholar
  33. 33.
    Wang AZ, Ojakian GK, Nelson WJ (1990) Steps in the morphogenesis of a polarized epithelium. J Cell Sci 95:137–151PubMedGoogle Scholar
  34. 34.
    Hsiao AY, Tung Y-C, Qu X, Patel LR, Pienta KJ, Takayama S (2012) 384 hanging drop arrays give excellent z-factors and allow versatile formation of co-culture spheroids. Biotechnol Bioeng 109(5):1293–1304PubMedCentralPubMedGoogle Scholar
  35. 35.
    Hsiao AY, Tung YC, Kuo CH, Mosadegh B, Bedenis R, Pienta KJ, Takayama S (2012) Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates. Biomed Microdevices 14(2):313–323PubMedCentralPubMedGoogle Scholar
  36. 36.
    Tung Y-C, Hsiao AY, Allen SG, Y-s T, Ho M, Takayama S (2011) High-throughput 3d spheroid culture and drug testing using a 384 hanging drop array. Analyst 136(3):473–478PubMedGoogle Scholar
  37. 37.
    Lee WG, Ortmann D, Hancock MJ, Bae H, Khademhosseini A (2010) A hollow sphere soft lithography approach for long-term hanging drop methods. Tissue Eng Part C Methods 16(2):249–259PubMedGoogle Scholar
  38. 38.
    Souza GR, Molina JR, Raphael RM, Ozawa MG, Stark DJ, Levin CS, Bronk LF, Ananta JS, Mandelin J, Georgescu M-M, Bankson JA, Gelovani JG, Killian TC, Arap W, Pasqualini R (2010) Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol 5(4):291–296PubMedGoogle Scholar
  39. 39.
    Lin R-Z, Chu W-C, Chiang C-C, Lai C-H, Chang H-Y (2008) Magnetic reconstruction of three-dimensional tissues from multicellular spheroids. Tissue Eng Part C Methods 14(3):197–205PubMedGoogle Scholar
  40. 40.
    Tasoglu S, Kavaz D, Gurkan UA, Guven S, Chen P, Zheng R, Demirci U (2013) Paramagnetic levitational assembly of hydrogels. Adv Mater 25(8):1137–1143PubMedGoogle Scholar
  41. 41.
    Xu F, Finley TD, Turkaydin M, Sung Y, Gurkan UA, Yavuz AS, Guldiken RO, Demirci U (2011) The assembly of cell-encapsulating microscale hydrogels using acoustic waves. Biomaterials 32(31):7847–7855PubMedCentralPubMedGoogle Scholar
  42. 42.
    Xu F, Wu CAM, Rengarajan V, Finley TD, Keles HO, Sung YR, Li BQ, Gurkan UA, Demirci U (2011) Three-dimensional magnetic assembly of microscale hydrogels. Adv Mater 23(37):4254–4260PubMedCentralPubMedGoogle Scholar
  43. 43.
    Barzegari A, Saei AA (2012) An update to space biomedical research: tissue engineering in microgravity bioreactors. BioImpacts 2(1):23–32PubMedCentralPubMedGoogle Scholar
  44. 44.
    Maxson S, Orr D, Burg KJL (2011) Bioreactors for tissue engineering. Tissue engineering: from lab to clinic. Springer, BerlinGoogle Scholar
  45. 45.
    Chen HC, Hu YC (2006) Bioreactors for tissue engineering. Biotechnol Lett 28(18):1415–1423PubMedGoogle Scholar
  46. 46.
    Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86PubMedGoogle Scholar
  47. 47.
    Becker JL (2013) Cellular biotechnology operations support systems: evaluation of ovarian tumor cell growth and gene expression (cboss-01-ovarian). http://www.nasa.gov/mission_pages/station/research/experiments/248.html
  48. 48.
    Jessup JM (2013) Cellular biotechnology operations support systems: use of NASA bioreactor to study cell cycle regulation: mechanisms of colon carcinoma metastasis in microgravity. http://www.nasa.gov/mission_pages/station/research/experiments/CBOSS-01-Colon.html
  49. 49.
    Navran S (2008) The application of low shear modeled microgravity to 3-d cell biology and tissue engineering. In: El-Gewely MR (ed) Biotechnology annual review, vol 14. Elsevier, Amsterdam, pp 275–296Google Scholar
  50. 50.
    Begley CM, Kleis SJ (2002) Rwpv bioreactor mass transport: earth-based and in microgravity. Biotechnol Bioeng 80(4):465–476PubMedGoogle Scholar
  51. 51.
    Barrila J, Radtke AL, Crabbé A, Sarker SF, Herbst-Kralovetz MM, Ott CM, Nickerson CA (2010) Organotypic 3d cell culture models: Using the rotating wall vessel to study host–pathogen interactions. Nat Rev Microbiol 8(11):791–801PubMedGoogle Scholar
  52. 52.
    Freed LE, Langer R, Martin I, Pellis NR, Vunjak-Novakovic G (1997) Tissue engineering of cartilage in space. Proc Natl Acad Sci 94(25):13885–13890PubMedGoogle Scholar
  53. 53.
    Grun B, Benjamin E, Sinclair J, Timms JF, Jacobs IJ, Gayther SA, Dafou D (2009) Three-dimensional in vitro cell biology models of ovarian and endometrial cancer. Cell Prolif 42(2):219–228PubMedGoogle Scholar
  54. 54.
    Takeda M, Magaki T, Okazaki T, Kawahara Y, Manabe T, Yuge L, Kurisu K (2009) Effects of simulated microgravity on proliferation and chemosensitivity in malignant glioma cells. Neurosci Lett 463(1):54–59PubMedGoogle Scholar
  55. 55.
    Grimm D, Bauer J, Kossmehl P, Shakibaei M, Schonberger J, Pickenhahn H, Schulze-Tanzil G, Vetter R, Eilles C, Paul M, Cogoli A (2002) Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J 16(2):604–606PubMedGoogle Scholar
  56. 56.
    Han ZB, Ishizaki K, Nishizawa K, Kato T, Todo T, Ikenaga M (1999) A genetic effect of altered gravity: Mutations induced by simulated hypogravity and hypergravity in microsatellite sequences of human tumor cells. Mutat Res 426(1):1–10PubMedGoogle Scholar
  57. 57.
    Hammer BE, Kidder LS, Williams PC, Xu WW (2009) Magnetic levitation of mc3t3 osteoblast cells as a ground-based simulation of microgravity. Microgravity Sci Technol 21(4):311–318PubMedCentralPubMedGoogle Scholar
  58. 58.
    Nishikawa M, Ohgushi H, Tamai N, Osuga K, Uemura M, Yoshikawa H, Myoui A (2005) The effect of simulated microgravity by three-dimensional clinostat on bone tissue engineering. Cell Transplant 14(10):829–835PubMedGoogle Scholar
  59. 59.
    Xu F, Celli J, Rizvi I, Moon S, Hasan T, Demirci U (2011) A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 6(2):204–212PubMedCentralPubMedGoogle Scholar
  60. 60.
    Moon S, Ceyhan E, Gurkan UA, Demirci U (2011) Statistical modeling of single target cell encapsulation. PLoS One 6(7):e21580PubMedCentralPubMedGoogle Scholar
  61. 61.
    Ceyhan E, Xu F, Gurkan UA, Emre AE, Turali ES, El Assal R, Acikgenc A, Wu CM, Demirci U (2012) Prediction and control of number of cells in microdroplets by stochastic modeling. Lab on a Chip. doi:10.1039/C1032LC40523G
  62. 62.
    Tasoglu S, Demirci U (2013) Bioprinting for stem cell research. Trends Biotechnol 31(1):10–19PubMedCentralPubMedGoogle Scholar
  63. 63.
    Demirci U, Khademhosseini A, Langer R, Blander J (2012) Microfluidic technologies for human health. World Scientific Publishing Company, SingaporeGoogle Scholar
  64. 64.
    Tasoglu S, Gurkan UA, Wang A, Demirci U (2013) Manipulating biological agents and cells in microscale volumes for applications in medicine. Chem Soc Rev 13(42):5788–5808Google Scholar
  65. 65.
    Demirci U, Montesano G (2007) Cell encapsulating droplet vitrification. Lab Chip 7(11):1428–1433PubMedGoogle Scholar
  66. 66.
    Demirci U, Montesano G (2007) Single cell epitaxy by acoustic picoliter droplets. Lab Chip 7:1139–1145PubMedGoogle Scholar
  67. 67.
    Gurkan UA, Tasoglu S, Kavaz D, Demirel MC, Demirci U (2012) Emerging technologies for assembly of microscale hydrogels. Adv Healthc Mater 1(2):149–158PubMedCentralPubMedGoogle Scholar
  68. 68.
    Tasoglu S, Kaynak G, Szeri AJ, Demirci U, Muradoglu M (2010) Impact of a compound droplet on a flat surface: a model for single cell epitaxy. Phys Fluids 22(8)Google Scholar
  69. 69.
    Kistler SF (ed) (1993) Wettability. Dekker, New YorkGoogle Scholar
  70. 70.
    Muradoglu M, Tasoglu S (2010) A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls. Comput Fluids 39(4):615–625Google Scholar
  71. 71.
    Tasoglu S, Rohan LC, Katz DF, Szeri AJ (2013) Transient swelling, spreading and drug delivery by a dissolved anti-hiv microbicide-bearing film. Phys Fluids 25(3):031901–031916 (http://dx.doi.org/10.1063/1.4793598)Google Scholar
  72. 72.
    Szeri AJ, Park SC, Tasoglu S, Verguet S, Gorham A, Gao Y, Katz DF (2010) Epithelial coating mechanisms by semi-solid materials: application to microbicide gels. Biophys J 98(3):604Google Scholar
  73. 73.
    Tasoglu S, Peters JJ, Park SC, Verguet S, Katz DF, Szeri AJ (2011) The effects of inhomogeneous boundary dilution on the coating flow of an anti-HIV microbicide vehicle. Phys Fluids 23(9):093101Google Scholar
  74. 74.
    Takamatsu H, Rubinsky B (1999) Viability of deformed cells. Cryobiology 39(3):243–251PubMedGoogle Scholar
  75. 75.
    Moon S, Hasan SK, Song YS, Xu F, Keles HO, Manzur F, Mikkilineni S, Hong JW, Nagatomi J, Haeggstrom E, Khademhosseini A, Demirci U (2010) Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C Methods 16(1):157–166PubMedGoogle Scholar
  76. 76.
    Xu F, Moon SJ, Emre AE, Turali ES, Song YS, Hacking SA, Nagatomi J, Demirci U (2010) A droplet-based building block approach for bladder smooth muscle cell (smc) proliferation. Biofabrication 2(1):9Google Scholar
  77. 77.
    Moon S, Kim YG, Dong L, Lombardi M, Haeggstrom E, Jensen RV, Hsiao LL, Demirci U (2011) Drop-on-demand single cell isolation and total RNA analysis. PLoS One 6(3):e17455PubMedCentralPubMedGoogle Scholar
  78. 78.
    Samot J, Moon S, Shao L, Zhang X, Xu F, Song Y, Keles HO, Matloff L, Markel J, Demirci U (2011) Blood banking in living droplets. PLoS One 6(3):e17530PubMedCentralPubMedGoogle Scholar
  79. 79.
    Tasoglu S, Park SC, Peters JJ, Katz DF, Szeri AJ (2011) The consequences of yield stress on deployment of a non-newtonian anti-HIV microbicide gel. J Nonnewton Fluid Mech 166(19–20):1116–1122PubMedCentralPubMedGoogle Scholar
  80. 80.
    Tasoglu S, Katz DF, Szeri AJ (2012) Transient spreading and swelling behavior of a gel deploying an anti-HIV microbicide. Journal of Non-Newtonian Fluid Mechanics 187:36–42PubMedGoogle Scholar
  81. 81.
    Tasoglu S, Szeri AJ, Katz DF (2011) Transport processes in vaginal films that release anti-HIV microbicide molecules. Biophys J 100(3):489Google Scholar
  82. 82.
    Kleinman HK, Martin GR (2005) Matrigel: Basement membrane matrix with biological activity. In: Seminars in cancer biology. Elsevier, 15(5):378–386Google Scholar
  83. 83.
    Fridman R, Kibbey MC, Royce LS, Zain M, Sweeney TM, Jicha DL, Yannelli JR, Martin GR, Kleinman HK (1991) Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with matrigel. J Natl Cancer Inst 83(11):769–774PubMedGoogle Scholar
  84. 84.
    Webber MM, Bello D, Kleinman HK, Hoffman MP (1997) Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells. Carcinogenesis 18(6):1225–1231PubMedGoogle Scholar
  85. 85.
    Shekhar MPV, Werdell J, Santner SJ, Pauley RJ, Tait L (2001) Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: Implications for tumor development and progression. Cancer Res 61(4):1320–1326PubMedGoogle Scholar
  86. 86.
    Adnan OA-Y, Imran R, Conor LE, Jonathan PC, Tayyaba H (2009) Puramatrix encapsulation of cancer cells. J Vis Exp (34)Google Scholar
  87. 87.
    Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci 90(8):3334–3338PubMedGoogle Scholar
  88. 88.
    Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16(18):1385–1393PubMedGoogle Scholar
  89. 89.
    Weaver VM, Howlett AR, Langton-Webster B, Petersen OW, Bissell MJ (1995) The development of a functionally relevant cell culture model of progressive human breast cancer. In: Seminars in cancer biology. Elsevier, 6(3):175–184Google Scholar
  90. 90.
    Spancake KM, Anderson CB, Weaver VM, Matsunami N, Bissell MJ, White RL (1999) E7-transduced human breast epithelial cells show partial differentiation in three-dimensional culture. Cancer Res 59(24):6042–6045PubMedGoogle Scholar
  91. 91.
    Gelain F, Bottai D, Vescovi A, Zhang S (2006) Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 1(1):e119PubMedCentralPubMedGoogle Scholar
  92. 92.
    Kim MS, Yeon JH, Park J-K (2007) A microfluidic platform for 3-dimensional cell culture and cell-based assays. Biomed Microdevices 9(1):25–34PubMedGoogle Scholar
  93. 93.
    Ranieri JP, Bellamkonda R, Bekos EJ, Vargo TG, Gardella JA, Aebischer P (2004) Neuronal cell attachment to fluorinated ethylene propylene films with covalently immobilized laminin oligopeptides YIGSR and IKVAV. II. J Biomed Mater Res 29(6):779–785Google Scholar
  94. 94.
    Knight CG, Morton LF, Peachey AR, Tuckwell DS, Farndale RW, Barnes MJ (2000) The collagen-binding a-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J Biol Chem 275(1):35–40PubMedGoogle Scholar
  95. 95.
    Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238(4826):491PubMedGoogle Scholar
  96. 96.
    Nowakowski GS, Dooner MS, Valinski HM, Mihaliak AM, Quesenberry PJ, Becker PS (2004) A specific heptapeptide from a phage display peptide library homes to bone marrow and binds to primitive hematopoietic stem cells. Stem Cells 22(6):1030–1038PubMedGoogle Scholar
  97. 97.
    Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci 99(15):9996–10001PubMedGoogle Scholar
  98. 98.
    Davis ME, Motion JPM, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, Lee RT (2005) Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111(4):442–450PubMedCentralPubMedGoogle Scholar
  99. 99.
    Horii A, Wang X, Gelain F, Zhang S (2007) Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-d migration. PLoS One 2(2):e190PubMedCentralPubMedGoogle Scholar
  100. 100.
    Barcellos-Hoff MH, Medina D (2005) New highlights on stroma-epithelial interactions in breast cancer. Breast Cancer Res 7(1):33–36PubMedCentralPubMedGoogle Scholar
  101. 101.
    Karp JM, Dalton PD, Shoichet MS (2003) Scaffolds for tissue engineering. MRS Bull 28(4):301–306Google Scholar
  102. 102.
    Asghar W, Kim YT, Ilyas A, Sankaran J, Wan Y, Iqbal SM (2012) Synthesis of nano-textured biocompatible scaffolds from chicken eggshells. Nanotechnology 23(47):475601–475609Google Scholar
  103. 103.
    Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543PubMedGoogle Scholar
  104. 104.
    Buurma B, Gu K, Rutherford RB (2003) Transplantation of human pulpal and gingival fibroblasts attached to synthetic scaffolds. Eur J Oral Sci 107(4):282–289Google Scholar
  105. 105.
    Asghar W, Islam M, Wadajkar AS, Wan Y, Ilyas A, Nguyen KT, Iqbal SM (2012) PLGA micro- and nanoparticles loaded into gelatin scaffold for controlled drug release. IEEE T Nanotech 11(3):546–553Google Scholar
  106. 106.
    Cunliffe D, Pennadam S, Alexander C (2004) Synthetic and biological polymers-merging the interface. Eur Polym J 40(1):5–25Google Scholar
  107. 107.
    Chen G, Sato T, Ushida T, Hirochika R, Shirasaki Y, Ochiai N, Tateishi T (2003) The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J Biomed Mater Res A 67(4):1170–1180PubMedGoogle Scholar
  108. 108.
    Sahoo SK, Panda AK, Labhasetwar V (2005) Characterization of porous PLGA/PLA microparticles as a scaffold for three dimensional growth of breast cancer cells. Biomacromolecules 6(2):1132–1139PubMedGoogle Scholar
  109. 109.
    Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge JS, Polverini PJ, Mooney DJ (2007) Engineering tumors with 3d scaffolds. Nat Methods 4(10):855–860PubMedGoogle Scholar
  110. 110.
    Knight E, Murray B, Carnachan R, Przyborski S (2011) Alvetex®: polystyrene scaffold technology for routine three dimensional cell culture. Methods Mol Biol 695:323–340PubMedGoogle Scholar
  111. 111.
    Caicedo-Carvajal CE, Liu Q, Remache Y, Goy A, Suh KS (2011) Cancer tissue engineering: a novel 3d polystyrene scaffold for in vitro isolation and amplification of lymphoma cancer cells from heterogeneous cell mixtures. J Tissue Eng 2(1)Google Scholar
  112. 112.
    Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254PubMedGoogle Scholar
  113. 113.
    Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, Friedl A, Keely PJ (2011) Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 178(3):1221–1232PubMedGoogle Scholar
  114. 114.
    Kraning-Rush CM, Reinhart-King CA (2012) Controlling matrix stiffness and topography for the study of tumor cell migration. Cell Adh Migr 6(3):274–279PubMedGoogle Scholar
  115. 115.
    Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572PubMedGoogle Scholar
  116. 116.
    Mak M, Reinhart-King CA, Erickson D (2011) Microfabricated physical spatial gradients for investigating cell migration and invasion dynamics. PLoS One 6(6):e20825PubMedCentralPubMedGoogle Scholar
  117. 117.
    Sahai E (2007) Illuminating the metastatic process. Nat Rev Cancer 7(10):737–749PubMedGoogle Scholar
  118. 118.
    Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906PubMedCentralPubMedGoogle Scholar
  119. 119.
    Carey SP, Kraning-Rush CM, Williams RM, Reinhart-King CA (2012) Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials 33(16):4157–4165PubMedCentralPubMedGoogle Scholar
  120. 120.
    Provenzano PP, Inman DR, Eliceiri KW, Trier SM, Keely PJ (2008) Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys J 95(11):5374–5384PubMedCentralPubMedGoogle Scholar
  121. 121.
    Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):38PubMedCentralPubMedGoogle Scholar
  122. 122.
    Charest JM, Califano JP, Carey SP, Reinhart-King CA (2012) Fabrication of substrates with defined mechanical properties and topographical features for the study of cell migration. Macromol Biosci 12(1):12–20PubMedGoogle Scholar
  123. 123.
    Kraning-Rush CM, Califano JP, Reinhart-King CA (2012) Cellular traction stresses increase with increasing metastatic potential. PLoS One 7(2):e32572PubMedCentralPubMedGoogle Scholar
  124. 124.
    Darling EM, Zauscher S, Block JA, Guilak F (2007) A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys J 92(5):1784–1791PubMedCentralPubMedGoogle Scholar
  125. 125.
    Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88(5):3689–3698PubMedCentralPubMedGoogle Scholar
  126. 126.
    Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780–783PubMedGoogle Scholar
  127. 127.
    Ramanujan S, Pluen A, McKee TD, Brown EB, Boucher Y, Jain RK (2002) Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys J 83(3):1650–1660PubMedCentralPubMedGoogle Scholar
  128. 128.
    Hegedus B, Marga F, Jakab K, Sharpe-Timms KL, Forgacs G (2006) The interplay of cell-cell and cell-matrix interactions in the invasive properties of brain tumors. Biophys J 91(7):2708–2716PubMedCentralPubMedGoogle Scholar
  129. 129.
    Qazi H, Shi ZD, Tarbell JM (2011) Fluid shear stress regulates the invasive potential of glioma cells via modulation of migratory activity and matrix metalloproteinase expression. PLoS One 6(5):e20348PubMedCentralPubMedGoogle Scholar
  130. 130.
    Binder DK, Berger MS (2002) Proteases and the biology of glioma invasion. J Neurooncol 56(2):149–158PubMedGoogle Scholar
  131. 131.
    Rizvi I, Gurkan UA, Tasoglu S, Alagic N, Celli JP, Mensah LB, Mai Z, Demirci U, Hasan T (2013) Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci USA doi: 10.1073/pnas.1216989110Google Scholar
  132. 132.
    Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3d. Cell 130(4):601–610PubMedGoogle Scholar
  133. 133.
    Hutmacher DW (2010) Biomaterials offer cancer research the third dimension. Nat Mater 9(2):90–93PubMedGoogle Scholar
  134. 134.
    Feder-Mengus C, Ghosh S, Reschner A, Martin I, Spagnoli GC (2008) New dimensions in tumor immunology: what does 3d culture reveal? Trends Mol Med 14(8):333–340PubMedGoogle Scholar
  135. 135.
    Cheema U, Brown RA, Alp B, MacRobert AJ (2008) Spatially defined oxygen gradients and vascular endothelial growth factor expression in an engineered 3d cell model. Cell Mol Life Sci 65(1):177–186PubMedGoogle Scholar
  136. 136.
    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated sdf-1/cxcl12 secretion. Cell 121(3):335–348PubMedGoogle Scholar
  137. 137.
    Dong Z, Nor JE (2009) Transcriptional targeting of tumor endothelial cells for gene therapy. Adv Drug Deliv Rev 61(7–8):542–553PubMedCentralPubMedGoogle Scholar
  138. 138.
    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563PubMedGoogle Scholar
  139. 139.
    Studebaker AW, Storci G, Werbeck JL, Sansone P, Sasser AK, Tavolari S, Huang T, Chan MW, Marini FC, Rosol TJ, Bonafe M, Hall BM (2008) Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res 68(21):9087–9095PubMedGoogle Scholar
  140. 140.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401PubMedGoogle Scholar
  141. 141.
    Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5(15):1597–1601PubMedGoogle Scholar
  142. 142.
    Anghelina M, Krishnan P, Moldovan L, Moldovan NI (2006) Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair-conversion of cell columns into fibrovascular bundles. Am J Pathol 168:529–541PubMedGoogle Scholar
  143. 143.
    Ceyhan E, Xu F, Gurkan UA, Emre AE, Turali ES, El Assal R, Acikgenc A, Wu CAM, Demirci U (2012) Prediction and control of number of cells in microdroplets by stochastic modeling. Lab Chip 12(22):4884–4893PubMedCentralPubMedGoogle Scholar
  144. 144.
    Gurkan UA, Sung Y, El Assal R, Xu F, Trachtenberg A, Kuo W, Demirci U (2012) Bioprinting anisotropic stem cell microenvironment. J Tissue Eng Regen Med 6:366Google Scholar
  145. 145.
    Xu F, Sridharan B, Wang SQ, Gurkan UA, Syverud B, Demirci U (2011) Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation. Biomicrofluidics 5(2)Google Scholar
  146. 146.
    Xu F, Wu JH, Wang SQ, Durmus NG, Gurkan UA, Demirci U (2011) Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 3(3):34101–34113Google Scholar
  147. 147.
    Gurkan UA, Fan Y, Xu F, Erkmen B, Urkac ES, Parlakgul G, Bernstein J, Xing W, Boyden ES, Demirci U (2013) Simple precision creation of digitally specified, spatially heterogeneous, engineered tissue architectures. Adv Mater 25(8):1192–1198PubMedGoogle Scholar
  148. 148.
    Sekeroglu K, Gurkan UA, Demirci U, Demirel MC (2011) Transport of a soft cargo on a nanoscale ratchet. Appl Phys Lett 99(6)Google Scholar
  149. 149.
    Feng X, JinHui W, ShuQi W, Naside Gozde D, Umut Atakan G, Utkan D (2011) Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 3(3):034101Google Scholar
  150. 150.
    Durmus NG, Tasoglu S, Demirci U (2013) Bioprinting: Functional droplet networks. Nat Mater 12(6):478–479.Google Scholar
  151. 151.
    Birgersdotter A, Sandberg R, Ernberg I (2005) Gene expression perturbation in vitro—a growing case for three-dimensional (3d) culture systems. Semin Cancer Biol 15(5):405–412PubMedGoogle Scholar
  152. 152.
    Kimlin LC, Casagrande G, Virador VM (2013) In vitro three-dimensional (3d) models in cancer research: an update. Mol Carcinog 52(3):167–182PubMedGoogle Scholar
  153. 153.
    Abu-Yousif AO, Rizvi I, Evans CL, Celli JP, Hasan T (2009) Puramatrix encapsulation of cancer cells. J Vis Exp (34)Google Scholar
  154. 154.
    Zhong W, Celli JP, Rizvi I, Mai Z, Spring BQ, Yun SH, Hasan T (2009) In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring. Br J Cancer 101(12):2015–2022PubMedCentralPubMedGoogle Scholar
  155. 155.
    Gurski LA, Petrelli NJ, Jia X, Farach-Carson MC (2010) 3d Matrices for anti-cancer drug testing and development. Oncology 1(2):20–25Google Scholar
  156. 156.
    Kim J (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15:365–377PubMedGoogle Scholar
  157. 157.
    Miller BE, Miller FR, Heppner GH (1985) Factors affecting growth and drug sensitivity of mouse mammary tumor lines in collagen gel cultures. Cancer Res 45(9):4200–4205PubMedGoogle Scholar
  158. 158.
    Martin KJ, Patrick DR, Bissell MJ, Fournier MV (2008) Prognostic breast cancer signature identified from 3d culture model accurately predicts clinical outcome across independent datasets. PLoS One 3(8):e2994PubMedCentralPubMedGoogle Scholar
  159. 159.
    Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004) The use of 3-d cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9(4):273–285PubMedGoogle Scholar
  160. 160.
    Hancock JD, Lessnick SL (2008) A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle 7(2):250–256PubMedGoogle Scholar
  161. 161.
    Teicher BA (2009) Acute and chronic in vivo therapeutic resistance. Biochem Pharmacol 77(11):1665–1673PubMedGoogle Scholar
  162. 162.
    Bartholoma P, Reininger-Mack A, Zhang Z, Thielecke H, Robitzki A (2005) A more aggressive breast cancer spheroid model coupled to an electronic capillary sensor system for a high-content screening of cytotoxic agents in cancer therapy: 3-dimensional in vitro tumor spheroids as a screening model. J Biomol Screen 10(7):705–714PubMedGoogle Scholar
  163. 163.
    Zhang X, Wang W, Yu W, Xie Y, Zhang X, Zhang Y, Ma X (2005) Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing. Biotechnol Prog 21(4):1289–1296PubMedGoogle Scholar
  164. 164.
    Schmeichel KL, Bissell MJ (2003) Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci 116(12):2377–2388PubMedCentralPubMedGoogle Scholar
  165. 165.
    Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW (2002) Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 115(1):39–50PubMedCentralPubMedGoogle Scholar
  166. 166.
    Demirbag B, Huri PY, Kose GT, Buyuksungur A, Hasirci V (2011) Advanced cell therapies with and without scaffolds. Biotechnol J 6(12)Google Scholar
  167. 167.
    Drewitz M, Helbling M, Fried N, Bieri M, Moritz W, Lichtenberg J, Kelm JM (2011) Towards automated production and drug sensitivity testing using scaffold-free spherical tumor microtissues. Biotechnol J 6(12):1488–1496PubMedGoogle Scholar
  168. 168.
    Rodríguez-Dévora JI, Shi Z-d XT (2011) Direct assembling methodologies for high-throughput bioscreening. Biotechnol J 6(12)Google Scholar
  169. 169.
    Debnath J, Brugge JS (2005) Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5(9):675–688PubMedGoogle Scholar
  170. 170.
    Yoshida D, Teramoto A (2007) The use of 3-d culture in peptide hydrogel for analysis of discoidin domain receptor 1-collagen interaction. Cell Adh Migr 1(2):92–98PubMedGoogle Scholar
  171. 171.
    Cheng K, Lai Y, Kisaalita WS (2008) Three-dimensional polymer scaffolds for high throughput cell-based assay systems. Biomaterials 29(18):2802–2812PubMedGoogle Scholar
  172. 172.
    Marrero B, Messina J, Heller R (2009) Generation of a tumor spheroid in a microgravity environment as a 3d model of melanoma. In Vitro Cell Dev Biol Anim 45(9):523–534PubMedCentralPubMedGoogle Scholar
  173. 173.
    Smith SJ, Wilson M, Ward JH, Rahman CV, Peet AC, Macarthur DC, Rose F, Grundy RG, Rahman R (2012) Recapitulation of tumor heterogeneity and molecular signatures in a 3d brain cancer model with decreased sensitivity to histone deacetylase inhibition. PLoS One 7(12)Google Scholar
  174. 174.
    Tang J, Cui J, Chen R, Guo K, Kang X, Li Y, Gao D, Sun L, Xu C, Chen J, Tang Z, Liu Y (2011) A three-dimensional cell biology model of human hepatocellular carcinoma in vitro. Tumor Biol 32(3):469–479Google Scholar
  175. 175.
    Becker JL, Blanchard DK (2007) Characterization of primary breast carcinomas grown in three-dimensional cultures. J Surg Res 142(2):256–262PubMedGoogle Scholar
  176. 176.
    Taga M, Yamauchi K, Odle J, Furian L, Sundaresan A, Ramesh GT, Pellis NR, Andrassy RJ, Kulkarni AD (2006) Melanoma growth and tumorigenicity in models of microgravity. Aviat Space Environ Med 77(11):1113–1116PubMedGoogle Scholar
  177. 177.
    Rhee HW, Zhau HE, Pathak S, Multani AS, Pennanen S, Visakorpi T, Chung LWK (2001) Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a three-dimensional rotating-wall vessel. In Vitro Cell Dev Biol Anim 37(3):127–140PubMedGoogle Scholar
  178. 178.
    Chopra V, Dinh TV, Hannigan EV (1997) Three-dimensional endothelial-tumor epithelial cell interactions in human cervical cancers. Vitro Cellular & Developmental Biology-Animal 33(6):432–442Google Scholar
  179. 179.
    Qian A, Zhang W, Xie L, Weng Y, Yang P, Wang Z, Hu L, Xu H, Tian Z, Shang P (2008) Simulated weightlessness alters biological characteristics of human breast cancer cell line MCF-7. Acta Astronaut 63(7–10):947–958Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Waseem Asghar
    • 1
  • Hadi Shafiee
    • 1
  • Pu Chen
    • 1
  • Savas Tasoglu
    • 1
  • Sinan Guven
    • 1
  • Umut Atakan Gurkan
    • 2
  • Utkan Demirci
    • 3
    • 4
  1. 1.Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolCambridgeUSA
  2. 2.CASE Biomanufacturing and Microfabrication Laboratory (CASE-BML), Department of Mechanical and Aerospace EngineeringAdvanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Case Western Reserve UniversityClevelandUSA
  3. 3.Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering and Division of Infectious DiseasesBrigham and Women’s Hospital, Harvard Medical SchoolCambridgeUSA
  4. 4.Harvard-MIT Health Sciences and TechnologyCambridgeUSA

Personalised recommendations