Skip to main content

The Role of Non-cancerous Cells in Cancer: Pancreatic Ductal Adenocarcinoma as a Model to Understand the Impact of Tumor Microenvironment on Epithelial Carcinogenesis

  • Chapter
  • First Online:
Cancer Targeted Drug Delivery

Abstract

Pancreatic ductal adenocarcinoma is a deadly tumor. Despite several advances in conventional and targeted therapies over decades, its mortality remains slightly less than its frequency. One of its main features is its compact stroma which is formed by pancreatic stellate cells. In the last decade, it became evident that the stromal component of the tumor is not a passive scaffold, but an active player in carcinogenesis. This component is mostly missing in our experimental settings. Even in genetically engineered mouse models where a fibrotic stroma is visible, tumor responses are different than in humans. Our inability to recreate the tumor microenvironment often leads to optimistic results in the therapy of pancreatic cancer. This temporary optimism is often lost after first clinical trials. Here we would summarize various approaches to treat pancreatic cancer and scrutinize their pros and cons from a biologic point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29

    PubMed  Google Scholar 

  2. Freeny PC, Traverso LW, Ryan JA (1993) Diagnosis and staging of pancreatic adenocarcinoma with dynamic computed tomography. Am J Surg 165(5):600–606

    CAS  PubMed  Google Scholar 

  3. Camacho D et al (2005) Value of laparoscopy in the staging of pancreatic cancer. JOP 6(6):552–561

    PubMed  Google Scholar 

  4. Canto MI et al (2012) Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology 142(4):796–804, quiz e14-5

    PubMed Central  PubMed  Google Scholar 

  5. Everhart J, Wright D (1995) Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA 273(20):1605–1609

    CAS  PubMed  Google Scholar 

  6. Michaud DS et al (2001) Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA 286(8):921–929

    CAS  PubMed  Google Scholar 

  7. Lowenfels AB et al (1993) Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med 328(20):1433–1437

    CAS  PubMed  Google Scholar 

  8. Giardiello FM et al (2000) Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119(6):1447–1453

    CAS  PubMed  Google Scholar 

  9. Klein AP et al (2004) Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res 64(7):2634–2638

    CAS  PubMed  Google Scholar 

  10. Scarlett CJ et al (2011) Precursor lesions in pancreatic cancer: morphological and molecular pathology. Pathology 43(3):183–200

    PubMed  Google Scholar 

  11. Hruban RH, Maitra A, Goggins M (2008) Update on pancreatic intraepithelial neoplasia. Int J Clin Exp Pathol 1(4):306–316

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Sipos B et al (2009) Pancreatic intraepithelial neoplasia revisited and updated. Pancreatology 9(1–2):45–54

    CAS  PubMed  Google Scholar 

  13. Hruban RH et al (2000) Progression model for pancreatic cancer. Clin Cancer Res 6(8):2969–2972

    CAS  PubMed  Google Scholar 

  14. Remmers N et al (2010) Molecular pathology of early pancreatic cancer. Cancer Biomark 9(1–6):421–440

    PubMed  Google Scholar 

  15. Guerra C et al (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11(3):291–302

    CAS  PubMed  Google Scholar 

  16. Hingorani SR et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4(6):437–450

    CAS  PubMed  Google Scholar 

  17. van Heek NT et al (2002) Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am J Pathol 161(5):1541–1547

    PubMed  Google Scholar 

  18. Luttges J et al (2001) Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am J Pathol 158(5):1677–1683

    CAS  PubMed  Google Scholar 

  19. Wilentz RE et al (2000) Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res 60(7):2002–2006

    CAS  PubMed  Google Scholar 

  20. Moskaluk CA, Hruban RH, Kern SE (1997) p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res 57(11):2140–2143

    CAS  PubMed  Google Scholar 

  21. Lohr M et al (2005) Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia 7(1):17–23

    PubMed Central  PubMed  Google Scholar 

  22. Almoguera C et al (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53(4):549–554

    CAS  PubMed  Google Scholar 

  23. Matsuda Y, Kure S, Ishiwata T (2012) Nestin and other putative cancer stem cell markers in pancreatic cancer. Med Mol Morphol 45(2):59–65

    CAS  PubMed  Google Scholar 

  24. Fernandez-del Castillo C, Warshaw AL (2001) Cystic neoplasms of the pancreas. Pancreatology 1(6):641–647

    CAS  PubMed  Google Scholar 

  25. Tseng JF et al (2005) Serous cystadenoma of the pancreas: tumor growth rates and recommendations for treatment. Ann Surg 242(3):413–419, discussion 419-21

    PubMed  Google Scholar 

  26. Colonna J et al (2008) Serous cystadenoma of the pancreas: clinical and pathological features in 33 patients. Pancreatology 8(2):135–141

    PubMed  Google Scholar 

  27. Ng DZ et al (2009) Cystic neoplasms of the pancreas: current diagnostic modalities and management. Ann Acad Med Singapore 38(3):251–259

    PubMed  Google Scholar 

  28. Basturk O, Coban I, Adsay NV (2009) Pancreatic cysts: pathologic classification, differential diagnosis, and clinical implications. Arch Pathol Lab Med 133(3):423–438

    PubMed  Google Scholar 

  29. Zamboni G et al (1999) Mucinous cystic tumors of the pancreas: clinicopathological features, prognosis, and relationship to other mucinous cystic tumors. Am J Surg Pathol 23(4):410–422

    CAS  PubMed  Google Scholar 

  30. Thompson LD et al (1999) Mucinous cystic neoplasm (mucinous cystadenocarcinoma of low-grade malignant potential) of the pancreas: a clinicopathologic study of 130 cases. Am J Surg Pathol 23(1):1–16

    CAS  PubMed  Google Scholar 

  31. Goh BK et al (2006) A review of mucinous cystic neoplasms of the pancreas defined by ovarian-type stroma: clinicopathological features of 344 patients. World J Surg 30(12):2236–2245

    PubMed  Google Scholar 

  32. Sarr MG et al (2003) Primary cystic neoplasms of the pancreas. Neoplastic disorders of emerging importance-current state-of-the-art and unanswered questions. J Gastrointest Surg 7(3):417–428

    PubMed  Google Scholar 

  33. Furukawa T et al (2011) Prognostic relevance of morphological types of intraductal papillary mucinous neoplasms of the pancreas. Gut 60(4):509–516

    PubMed  Google Scholar 

  34. Tanaka M et al (2012) International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology 12(3):183–197

    PubMed  Google Scholar 

  35. Kloppel G, Kosmahl M (2001) Cystic lesions and neoplasms of the pancreas. The features are becoming clearer. Pancreatology 1(6):648–655

    CAS  PubMed  Google Scholar 

  36. Pour P (1978) Islet cells as a component of pancreatic ductal neoplasms. I. Experimental study: ductular cells, including islet cell precursors, as primary progenitor cells of tumors. Am J Pathol 90(2):295–316

    CAS  PubMed  Google Scholar 

  37. Stanger BZ et al (2005) Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell 8(3):185–195

    CAS  PubMed  Google Scholar 

  38. Aichler M et al (2012) Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J Pathol 226(5):723–734

    CAS  PubMed  Google Scholar 

  39. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101

    CAS  PubMed  Google Scholar 

  40. Takao S, Ding Q, Matsubara S (2012) Pancreatic cancer stem cells: regulatory networks in the tumor microenvironment and targeted therapy. J Hepatobiliary Pancreat Sci 19(6):614–620

    PubMed  Google Scholar 

  41. Li C et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    CAS  PubMed  Google Scholar 

  42. Hermann PC et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323

    CAS  PubMed  Google Scholar 

  43. Oshima Y et al (2007) Isolation of mouse pancreatic ductal progenitor cells expressing CD133 and c-Met by flow cytometric cell sorting. Gastroenterology 132(2):720–732

    CAS  PubMed  Google Scholar 

  44. Li C et al (2011) c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology 141(6):2218–2227 e5

    CAS  PubMed  Google Scholar 

  45. Olempska M et al (2007) Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int 6(1):92–97

    CAS  PubMed  Google Scholar 

  46. Rasheed ZA et al (2010) Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 102(5):340–351

    CAS  PubMed  Google Scholar 

  47. Zhao M et al (2007) Evidence for the presence of stem cell-like progenitor cells in human adult pancreas. J Endocrinol 195(3):407–414

    CAS  PubMed  Google Scholar 

  48. Sanada Y et al (2006) Histopathologic evaluation of stepwise progression of pancreatic carcinoma with immunohistochemical analysis of gastric epithelial transcription factor SOX2: comparison of expression patterns between invasive components and cancerous or nonneoplastic intraductal components. Pancreas 32(2):164–170

    CAS  PubMed  Google Scholar 

  49. McCord AM et al (2009) Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 7(4):489–497

    CAS  PubMed  Google Scholar 

  50. Moriyama T et al (2010) Enhanced cell migration and invasion of CD133+ pancreatic cancer cells cocultured with pancreatic stromal cells. Cancer 116(14):3357–3368

    CAS  PubMed  Google Scholar 

  51. Miyake K et al (2008) Expression of hypoxia-inducible factor-1alpha, histone deacetylase 1, and metastasis-associated protein 1 in pancreatic carcinoma: correlation with poor prognosis with possible regulation. Pancreas 36(3):e1–e9

    CAS  PubMed  Google Scholar 

  52. Hernandez-Munoz I et al (2008) Pancreatic ductal adenocarcinoma: cellular origin, signaling pathways and stroma contribution. Pancreatology 8(4–5):462–469

    PubMed  Google Scholar 

  53. Apte MV et al (2004) Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas 29(3):179–187

    CAS  PubMed  Google Scholar 

  54. Bachem MG et al (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115(2):421–432

    CAS  PubMed  Google Scholar 

  55. Lee HO et al (2011) FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer 11:245

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Esposito I et al (2004) Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol 57(6):630–636

    CAS  PubMed  Google Scholar 

  57. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37

    PubMed  Google Scholar 

  58. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78

    CAS  PubMed  Google Scholar 

  59. Taeger J et al (2011) Targeting FGFR/PDGFR/VEGFR impairs tumor growth, angiogenesis, and metastasis by effects on tumor cells, endothelial cells, and pericytes in pancreatic cancer. Mol Cancer Ther 10(11):2157–2167

    CAS  PubMed  Google Scholar 

  60. Sangai T et al (2005) Effect of differences in cancer cells and tumor growth sites on recruiting bone marrow-derived endothelial cells and myofibroblasts in cancer-induced stroma. Int J Cancer 115(6):885–892

    CAS  PubMed  Google Scholar 

  61. Ceyhan GO et al (2010) Nerve growth factor and artemin are paracrine mediators of pancreatic neuropathy in pancreatic adenocarcinoma. Ann Surg 251(5):923–931

    PubMed  Google Scholar 

  62. Zhu Z et al (2002) Nerve growth factor and enhancement of proliferation, invasion, and tumorigenicity of pancreatic cancer cells. Mol Carcinog 35(3):138–147

    CAS  PubMed  Google Scholar 

  63. Erkan M et al (2007) Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. Gastroenterology 132(4):1447–1464

    CAS  PubMed  Google Scholar 

  64. Erkan M et al (2008) The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol 6(10):1155–1161

    PubMed  Google Scholar 

  65. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1(1):46–54

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Lunevicius R et al (2001) Clinicopathological significance of fibrotic capsule formation around liver metastasis from colorectal cancer. J Cancer Res Clin Oncol 127(3):193–199

    CAS  PubMed  Google Scholar 

  67. Erkan M et al (2012) The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol 9(8):454–467

    CAS  PubMed  Google Scholar 

  68. Erkan M et al (2012) How fibrosis influences imaging and surgical decisions in pancreatic cancer. Front Physiol 3:389

    PubMed Central  PubMed  Google Scholar 

  69. Erkan M et al (2009) Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 11(5):497–508

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Couvelard A et al (2005) Expression of hypoxia-inducible factors is correlated with the presence of a fibrotic focus and angiogenesis in pancreatic ductal adenocarcinomas. Histopathology 46(6):668–676

    CAS  PubMed  Google Scholar 

  71. Koong AC et al (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48(4):919–922

    CAS  PubMed  Google Scholar 

  72. Olive KP et al (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Erkan M et al (2012) The impact of the activated stroma on pancreatic ductal adenocarcinoma biology and therapy resistance. Curr Mol Med 12(3):288–303

    CAS  PubMed  Google Scholar 

  74. Gatenby RA, Gillies RJ (2008) A microenvironmental model of carcinogenesis. Nat Rev Cancer 8(1):56–61

    CAS  PubMed  Google Scholar 

  75. Erkan M et al (2012) StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut 61(2):172–178

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Yen TW et al (2002) Myofibroblasts are responsible for the desmoplastic reaction surrounding human pancreatic carcinomas. Surgery 131(2):129–134

    PubMed  Google Scholar 

  77. Bachem MG et al (2005) Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128(4):907–921

    CAS  PubMed  Google Scholar 

  78. Masamune A, Shimosegawa T (2009) Signal transduction in pancreatic stellate cells. J Gastroenterol 44(4):249–260

    PubMed  Google Scholar 

  79. Kim N et al (2009) Formation of vitamin A lipid droplets in pancreatic stellate cells requires albumin. Gut 58(10):1382–1390

    CAS  PubMed  Google Scholar 

  80. Berna MJ et al (2010) CCK1 and CCK2 receptors are expressed on pancreatic stellate cells and induce collagen production. J Biol Chem 285(50):38905–38914

    CAS  PubMed  Google Scholar 

  81. Armstrong T et al (2004) Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res 10(21):7427–7437

    CAS  PubMed  Google Scholar 

  82. Schmid-Kotsas A et al (1999) Lipopolysaccharide-activated macrophages stimulate the synthesis of collagen type I and C-fibronectin in cultured pancreatic stellate cells. Am J Pathol 155(5):1749–1758

    CAS  PubMed  Google Scholar 

  83. Masamune A et al (2009) Fibrinogen induces cytokine and collagen production in pancreatic stellate cells. Gut 58(4):550–559

    CAS  PubMed  Google Scholar 

  84. Apte MV et al (1999) Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut 44(4):534–541

    CAS  PubMed  Google Scholar 

  85. Miyamoto H et al (2004) Tumor-stroma interaction of human pancreatic cancer: acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins. Pancreas 28(1):38–44

    CAS  PubMed  Google Scholar 

  86. Phillips PA et al (2003) Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut 52(2):275–282

    CAS  PubMed  Google Scholar 

  87. Corcoran ML et al (1996) MMP-2: expression, activation and inhibition. Enzyme Protein 49(1–3):7–19

    CAS  PubMed  Google Scholar 

  88. Liu J et al (2012) BMP2 induces PANC-1 cell invasion by MMP-2 overexpression through ROS and ERK. Front Biosci 17:2541–2549

    Google Scholar 

  89. Soubani O et al (2012) Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 33(8):1563–1571

    CAS  PubMed  Google Scholar 

  90. Fujisawa T et al (2012) Cysteamine suppresses invasion, metastasis and prolongs survival by inhibiting matrix metalloproteinases in a mouse model of human pancreatic cancer. PLoS One 7(4):e34437

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Binker MG et al (2010) Hypoxia-reoxygenation increase invasiveness of PANC-1 cells through Rac1/MMP-2. Biochem Biophys Res Commun 393(3):371–376

    CAS  PubMed  Google Scholar 

  92. Bloomston M et al (2005) TIMP-1 antisense gene transfection attenuates the invasive potential of pancreatic cancer cells in vitro and inhibits tumor growth in vivo. Am J Surg 189(6):675–679

    CAS  PubMed  Google Scholar 

  93. Jones LE et al (2004) Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: increased expression of matrix metalloproteinase-7 predicts poor survival. Clin Cancer Res 10(8):2832–2845

    CAS  PubMed  Google Scholar 

  94. Michalski CW et al (2007) Mononuclear cells modulate the activity of pancreatic stellate cells which in turn promote fibrosis and inflammation in chronic pancreatitis. J Transl Med 5:63

    PubMed Central  PubMed  Google Scholar 

  95. Tian M et al (2008) Proteomic analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients. BMC Cancer 8:241

    PubMed Central  PubMed  Google Scholar 

  96. Durlik M, Gardian K (2012) Metalloproteinase 2 and 9 activity in the development of pancreatic cancer. Pol Przegl Chir 84(8):377–382

    PubMed  Google Scholar 

  97. Zhang Y, Ma B, Fan Q (2010) Mechanisms of breast cancer bone metastasis. Cancer Lett 292(1):1–7

    CAS  PubMed  Google Scholar 

  98. Yuan S et al (1996) Transdifferentiation of human islets to pancreatic ductal cells in collagen matrix culture. Differentiation 61(1):67–75

    CAS  PubMed  Google Scholar 

  99. Ingber DE, Madri JA, Jamieson JD (1981) Role of basal lamina in neoplastic disorganization of tissue architecture. Proc Natl Acad Sci USA 78(6):3901–3905

    CAS  PubMed  Google Scholar 

  100. Lai Wing Sun K, Correia JP, Kennedy TE (2011) Netrins: versatile extracellular cues with diverse functions. Development 138(11):2153–2169

    PubMed  Google Scholar 

  101. Ryschich E et al (2009) Promotion of tumor cell migration by extracellular matrix proteins in human pancreatic cancer. Pancreas 38(7):804–810

    CAS  PubMed  Google Scholar 

  102. Schwarz RE et al (2010) Antitumor effects of EMAP II against pancreatic cancer through inhibition of fibronectin-dependent proliferation. Cancer Biol Ther 9(8):632–639

    CAS  PubMed  Google Scholar 

  103. Paron I et al (2011) Tenascin-C enhances pancreatic cancer cell growth and motility and affects cell adhesion through activation of the integrin pathway. PLoS One 6(6):e21684

    CAS  PubMed Central  PubMed  Google Scholar 

  104. van der Zee JA et al (2012) Tumour basement membrane laminin expression predicts outcome following curative resection of pancreatic head cancer. Br J Cancer 107(7):1153–1158

    PubMed Central  PubMed  Google Scholar 

  105. Huanwen W et al (2009) Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines. Mol Cancer 8:125

    PubMed Central  PubMed  Google Scholar 

  106. Kanemaru M et al (2012) Thrombin stimulates integrin beta1-dependent adhesion of human pancreatic cancer cells to vitronectin through protease-activated receptor (PAR)-1. Hepatogastroenterology 59(117):1614–1620

    CAS  PubMed  Google Scholar 

  107. Aprile G et al (2013) Biglycan expression and clinical outcome in patients with pancreatic adenocarcinoma. Tumour Biol 34(1):131–137

    CAS  PubMed  Google Scholar 

  108. Collins AL et al (2012) Osteopontin expression is associated with improved survival in patients with pancreatic adenocarcinoma. Ann Surg Oncol 19(8):2673–2678

    PubMed Central  PubMed  Google Scholar 

  109. Kalra MK et al (2003) State-of-the-art imaging of pancreatic neoplasms. Br J Radiol 76(912):857–865

    CAS  PubMed  Google Scholar 

  110. Kim SJ et al (2012) Pancreatic adenocarcinoma upregulated factor, a novel endothelial activator, promotes angiogenesis and vascular permeability. Oncogene. 2012 Aug 20. doi: 10.1038/onc.2012.366. [Epub ahead of print]

    Google Scholar 

  111. Kuehn R et al (1999) Angiogenesis, angiogenic growth factors, and cell adhesion molecules are upregulated in chronic pancreatic diseases: angiogenesis in chronic pancreatitis and in pancreatic cancer. Pancreas 18(1):96–103

    CAS  PubMed  Google Scholar 

  112. Meadows KN, Bryant P, Pumiglia K (2001) Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem 276(52):49289–49298

    CAS  PubMed  Google Scholar 

  113. Blancher C et al (2001) Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Res 61(19):7349–7355

    CAS  PubMed  Google Scholar 

  114. Yu JL et al (2002) Effect of p53 status on tumor response to antiangiogenic therapy. Science 295(5559):1526–1528

    CAS  PubMed  Google Scholar 

  115. Shi Q et al (2001) Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res 61(10):4143–4154

    CAS  PubMed  Google Scholar 

  116. Farrow B, Evers BM (2002) Inflammation and the development of pancreatic cancer. Surg Oncol 10(4):153–169

    PubMed  Google Scholar 

  117. Wong YC, Wang YZ (2000) Growth factors and epithelial-stromal interactions in prostate cancer development. Int Rev Cytol 199:65–116

    CAS  PubMed  Google Scholar 

  118. Tjomsland V et al (2011) The desmoplastic stroma plays an essential role in the accumulation and modulation of infiltrated immune cells in pancreatic adenocarcinoma. Clin Dev Immunol 2011:212810

    PubMed Central  PubMed  Google Scholar 

  119. Aoyagi Y et al (2004) Overexpression of TGF-beta by infiltrated granulocytes correlates with the expression of collagen mRNA in pancreatic cancer. Br J Cancer 91(7):1316–1326

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Ozaki H et al (1999) The prognostic significance of lymph node metastasis and intrapancreatic perineural invasion in pancreatic cancer after curative resection. Surg Today 29(1):16–22

    CAS  PubMed  Google Scholar 

  121. Kayahara M et al (1995) Surgical strategy for carcinoma of the pancreas head area based on clinicopathologic analysis of nodal involvement and plexus invasion. Surgery 117(6):616–623

    CAS  PubMed  Google Scholar 

  122. Kayahara M et al (1993) An evaluation of radical resection for pancreatic cancer based on the mode of recurrence as determined by autopsy and diagnostic imaging. Cancer 72(7):2118–2123

    CAS  PubMed  Google Scholar 

  123. Kayahara M et al (1991) Clinicopathological study of pancreatic carcinoma with particular reference to the invasion of the extrapancreatic neural plexus. Int J Pancreatol 10(2):105–111

    CAS  PubMed  Google Scholar 

  124. Demir IE, Friess H, Ceyhan GO (2012) Nerve-cancer interactions in the stromal biology of pancreatic cancer. Front Physiol 3:97

    PubMed Central  PubMed  Google Scholar 

  125. Zhu Z et al (1999) Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol 17(8):2419–2428

    CAS  PubMed  Google Scholar 

  126. Hirai I et al (2002) Perineural invasion in pancreatic cancer. Pancreas 24(1):15–25

    PubMed  Google Scholar 

  127. Zhu ZW et al (2001) Nerve growth factor exerts differential effects on the growth of human pancreatic cancer cells. Clin Cancer Res 7(1):105–112

    CAS  PubMed  Google Scholar 

  128. Liu B, Lu KY (2002) Neural invasion in pancreatic carcinoma. Hepatobiliary Pancreat Dis Int 1(3):469–476

    PubMed  Google Scholar 

  129. Ceyhan GO et al (2009) Pancreatic neuropathy and neuropathic pain–a comprehensive pathomorphological study of 546 cases. Gastroenterology 136(1):177–186 e1

    PubMed  Google Scholar 

  130. Bapat AA et al (2011) Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer 11(10):695–707

    CAS  PubMed  Google Scholar 

  131. Samkharadze T et al (2011) Pigment epithelium-derived factor associates with neuropathy and fibrosis in pancreatic cancer. Am J Gastroenterol 106(5):968–980

    CAS  PubMed  Google Scholar 

  132. Demir IE et al (2010) The microenvironment in chronic pancreatitis and pancreatic cancer induces neuronal plasticity. Neurogastroenterol Motil 22(4):480–490, e112-3

    CAS  PubMed  Google Scholar 

  133. Haas SL et al (2009) Transforming growth factor-beta induces nerve growth factor expression in pancreatic stellate cells by activation of the ALK-5 pathway. Growth Factors 27(5):289–299

    CAS  PubMed  Google Scholar 

  134. Philip PA et al (2009) Consensus report of the national cancer institute clinical trials planning meeting on pancreas cancer treatment. J Clin Oncol 27(33):5660–5669

    PubMed  Google Scholar 

  135. Ying JE, Zhu LM, Liu BX (2012) Developments in metastatic pancreatic cancer: is gemcitabine still the standard? World J Gastroenterol 18(8):736–745

    CAS  PubMed  Google Scholar 

  136. Fukasawa M, Korc M (2004) Vascular endothelial growth factor-trap suppresses tumorigenicity of multiple pancreatic cancer cell lines. Clin Cancer Res 10(10):3327–3332

    CAS  PubMed  Google Scholar 

  137. Joensson P et al (2011) A novel antiangiogenic approach for adjuvant therapy of pancreatic carcinoma. Langenbecks Arch Surg 396(4):535–541

    PubMed  Google Scholar 

  138. Wicki A et al (2012) Targeting tumor-associated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin Cancer Res 18(2):454–464

    CAS  PubMed  Google Scholar 

  139. Kindler HL et al (2010) Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol 28(22):3617–3622

    CAS  PubMed  Google Scholar 

  140. Moore MJ et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25(15):1960–1966

    CAS  PubMed  Google Scholar 

  141. Safran H et al (2001) Overexpression of the HER-2/neu oncogene in pancreatic adenocarcinoma. Am J Clin Oncol 24(5):496–499

    CAS  PubMed  Google Scholar 

  142. Komoto M et al (2009) HER2 overexpression correlates with survival after curative resection of pancreatic cancer. Cancer Sci 100(7):1243–1247

    CAS  PubMed  Google Scholar 

  143. Safran H et al (2004) Herceptin and gemcitabine for metastatic pancreatic cancers that overexpress HER-2/neu. Cancer Invest 22(5):706–712

    CAS  PubMed  Google Scholar 

  144. Philip PA et al (2010) Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J Clin Oncol 28(22):3605–3610

    CAS  PubMed  Google Scholar 

  145. Merchan JR et al (2012) Phase II study of gemcitabine, oxaliplatin, and cetuximab in advanced pancreatic cancer. Am J Clin Oncol 35(5):446–450

    CAS  PubMed  Google Scholar 

  146. Zhou GX et al (2004) Detection of K-ras point mutation and telomerase activity during endoscopic retrograde cholangiopancreatography in diagnosis of pancreatic cancer. World J Gastroenterol 10(9):1337–1340

    CAS  PubMed  Google Scholar 

  147. Appels NM, Beijnen JH, Schellens JH (2005) Development of farnesyl transferase inhibitors: a review. Oncologist 10(8):565–578

    PubMed  Google Scholar 

  148. Matsui Y et al (2003) Modified radiosensitivity of pancreatic cancer xenografts by farnesyl protein transferase inhibitor and MEK inhibitor. Oncol Rep 10(5):1525–1528

    CAS  PubMed  Google Scholar 

  149. Macdonald JS et al (2005) A phase II study of farnesyl transferase inhibitor R115777 in pancreatic cancer: a Southwest oncology group (SWOG 9924) study. Invest New Drugs 23(5):485–487

    CAS  PubMed  Google Scholar 

  150. Kullmann F et al (2011) KRAS mutation in metastatic pancreatic ductal adenocarcinoma: results of a multicenter phase II study evaluating efficacy of cetuximab plus gemcitabine/oxaliplatin (GEMOXCET) in first-line therapy. Oncology 81(1):3–8

    CAS  PubMed  Google Scholar 

  151. Hotary KB et al (2003) Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114(1):33–45

    CAS  PubMed  Google Scholar 

  152. Awla D et al (2012) Neutrophil-derived matrix metalloproteinase-9 is a potent activator of trypsinogen in acinar cells in acute pancreatitis. J Leukoc Biol 91(5):711–719

    CAS  PubMed  Google Scholar 

  153. Ellenrieder V et al (2000) Role of MT-MMPs and MMP-2 in pancreatic cancer progression. Int J Cancer 85(1):14–20

    CAS  PubMed  Google Scholar 

  154. Bramhall SR et al (1997) Imbalance of expression of matrix metalloproteinases (MMPs) and tissue inhibitors of the matrix metalloproteinases (TIMPs) in human pancreatic carcinoma. J Pathol 182(3):347–355

    CAS  PubMed  Google Scholar 

  155. Iacobuzio-Donahue CA et al (2002) Exploring the host desmoplastic response to pancreatic carcinoma: gene expression of stromal and neoplastic cells at the site of primary invasion. Am J Pathol 160(1):91–99

    PubMed  Google Scholar 

  156. Krantz SB et al (2011) MT1-MMP cooperates with Kras(G12D) to promote pancreatic fibrosis through increased TGF-beta signaling. Mol Cancer Res 9(10):1294–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Kapischke M et al (2008) Characterisation of a novel matrix metalloproteinase inhibitor on pancreatic adenocarcinoma cells in vitro and in an orthotopic pancreatic cancer model in vivo. Int J Oncol 32(1):273–282

    CAS  PubMed  Google Scholar 

  158. Funel N et al (2010) Ukrain affects pancreas cancer cell phenotype in vitro by targeting MMP-9 and intra-/extracellular SPARC expression. Pancreatology 10(5):545–552

    CAS  PubMed  Google Scholar 

  159. Gansauge F et al (2007) The clinical efficacy of adjuvant systemic chemotherapy with gemcitabine and NSC-631570 in advanced pancreatic cancer. Hepatogastroenterology 54(75):917–920

    CAS  PubMed  Google Scholar 

  160. Conroy T, Gavoille C, Adenis A (2011) Metastatic pancreatic cancer: old drugs, new paradigms. Curr Opin Oncol 23(4):390–395

    PubMed  Google Scholar 

  161. Fingleton B (2008) MMPs as therapeutic targets–still a viable option? Semin Cell Dev Biol 19(1):61–68

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320–329

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Winter JM et al (2012) Survival after resection of pancreatic adenocarcinoma: results from a single institution over three decades. Ann Surg Oncol 19(1):169–175

    PubMed  Google Scholar 

  164. Conroy T et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364(19):1817–1825

    CAS  PubMed  Google Scholar 

  165. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Overall CM, Kleifeld O (2006) Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6(3):227–239

    CAS  PubMed  Google Scholar 

  167. Paez-Ribes M et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3):220–231

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Perez-Mancera PA et al (2012) What we have learned about pancreatic cancer from mouse models. Gastroenterology 142(5):1079–1092

    PubMed  Google Scholar 

  169. Folkman J et al (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339(6219):58–61

    CAS  PubMed  Google Scholar 

  170. Xie L et al (2011) Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner. Proc Natl Acad Sci USA 108(24):9939–9944

    CAS  PubMed  Google Scholar 

  171. Jacobetz MA et al (2013) Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62(1):112–120

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Provenzano PP et al (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21(3):418–429

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Erkan M (2013) The role of pancreatic stellate cells in pancreatic cancer. Pancreatology: official journal of the International Association of Pancreatology 13(2):106–109

    Google Scholar 

  174. Filippou DK et al (2004) Modified capitonage in partial cystectomy performed for liver hydatid disease: report of 2 cases. BMC Surg 4:8

    PubMed Central  PubMed  Google Scholar 

  175. Hockel M, Vaupel P (2001) Biological consequences of tumor hypoxia. Semin Oncol 28(2 Suppl 8):36–41

    CAS  PubMed  Google Scholar 

  176. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    CAS  PubMed  Google Scholar 

  177. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  PubMed  Google Scholar 

  178. Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418(6900):823

    CAS  PubMed  Google Scholar 

  179. Gillies RJ, Verduzco D, Gatenby RA (2012) Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer 12(7):487–493

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mert Erkan M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Erkan, M., Brocks, T., Friess, H. (2013). The Role of Non-cancerous Cells in Cancer: Pancreatic Ductal Adenocarcinoma as a Model to Understand the Impact of Tumor Microenvironment on Epithelial Carcinogenesis. In: Bae, Y., Mrsny, R., Park, K. (eds) Cancer Targeted Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7876-8_12

Download citation

Publish with us

Policies and ethics